/*====================================================================* - Copyright (C) 2001 Leptonica. All rights reserved. - - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions - are met: - 1. Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - 2. Redistributions in binary form must reproduce the above - copyright notice, this list of conditions and the following - disclaimer in the documentation and/or other materials - provided with the distribution. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *====================================================================*/ #ifndef LEPTONICA_ARRAY_ACCESS_H #define LEPTONICA_ARRAY_ACCESS_H /*! * \file arrayaccess.h * *
 *  1, 2, 4, 8, 16 and 32 bit data access within an array of 32-bit words
 *
 *  This is used primarily to access 1, 2, 4, 8, 16 and 32 bit pixels
 *  in a line of image data, represented as an array of 32-bit words.
 *
 *     pdata:  pointer to first 32-bit word in the array
 *     n:      index of the pixel in the array
 *
 *  Function calls for these accessors are defined in arrayaccess.c.
 *
 *  However, for efficiency we use the inline macros for all accesses.
 *  Even though the 2 and 4 bit set* accessors are more complicated,
 *  they are about 10% faster than the function calls.
 *
 *  The 32 bit access is just a cast and ptr arithmetic.  We include
 *  it so that the input ptr can be void*.
 *
 *  At the end of this file is code for invoking the function calls
 *  instead of inlining.
 *
 *  The macro SET_DATA_BIT_VAL(pdata, n, val) is a bit slower than
 *      if (val == 0)
 *          CLEAR_DATA_BIT(pdata, n);
 *      else
 *          SET_DATA_BIT(pdata, n);
 *
 *  Some compilers complain when the SET macros are surrounded by
 *  parentheses, because parens require an evaluation and it is not
 *  defined for SET macros.  If SET_DATA_QBIT were defined as a
 *  compound macro, in analogy to l_setDataQbit(), it requires
 *  surrounding braces:
 * \code
 *     #define  SET_DATA_QBIT(pdata, n, val) \
 *        {l_uint32 *_TEMP_WORD_PTR_; \
 *         _TEMP_WORD_PTR_ = (l_uint32 *)(pdata) + ((n) >> 3); \
 *         *_TEMP_WORD_PTR_ &= ~(0xf0000000 >> (4 * ((n) & 7))); \
 *         *_TEMP_WORD_PTR_ |= (((val) & 15) << (28 - 4 * ((n) & 7)));}
 * \endcode
 *  but if used in an if/else
 * \code
 *      if (x)
 *         SET_DATA_QBIT(...);
 *      else
 *         ...
 * \endcode
 *  the compiler sees
 * \code
 *      if (x)
 *         {......};
 *      else
 *         ...
 * \endcode
 *  The semicolon comes after the brace and will not compile.
 *  This can be fixed in the call by either omitting the semicolon
 *  or requiring another set of braces around SET_DATA_QBIT(), but
 *  both these options break compatibility with current code, and
 *  require special attention by anyone using the macros.
 *
 *  There are (at least) two ways to fix this in the macro definitions,
 *  suggested by Dave Bryan.
 *  (1) Surround the braces in the macro above with
 *         do {....} while(0)
 *      Then the semicolon just terminates the expression.
 *  (2) Reduce the blocks to a single expression; e.g,
 *         *((l_uint32 *)(pdata) + ((n) >> 3)) = \
 *           *((l_uint32 *)(pdata) + ((n) >> 3)) \
 *           & ~(0xf0000000 >> (4 * ((n) & 7))) \
 *           | (((val) & 15) << (28 - 4 * ((n) & 7)))
 *      This appears to cause redundant computation, but the compiler
 *      should evaluate the common subexpression only once.
 *  All these methods have the same performance, giving about 300M
 *  SET_DATA_QBIT operations per second on a fast 64 bit system.
 *  Using the function calls instead of the macros results in about 250M
 *  SET_DATA_QBIT operations per second, a performance hit of nearly 20%.
 * 
*/ #define USE_INLINE_ACCESSORS 1 #if USE_INLINE_ACCESSORS /*=============================================================*/ /* Faster: use in line accessors */ /*=============================================================*/ /*--------------------------------------------------* * 1 bit access * *--------------------------------------------------*/ /*! 1 bit access - get */ #define GET_DATA_BIT(pdata, n) \ ((*((const l_uint32 *)(pdata) + ((n) >> 5)) >> (31 - ((n) & 31))) & 1) /*! 1 bit access - set */ #define SET_DATA_BIT(pdata, n) \ *((l_uint32 *)(pdata) + ((n) >> 5)) |= (0x80000000 >> ((n) & 31)) /*! 1 bit access - clear */ #define CLEAR_DATA_BIT(pdata, n) \ *((l_uint32 *)(pdata) + ((n) >> 5)) &= ~(0x80000000 >> ((n) & 31)) /*! 1 bit access - set value (0 or 1) */ #define SET_DATA_BIT_VAL(pdata, n, val) \ *((l_uint32 *)(pdata) + ((n) >> 5)) = \ ((*((l_uint32 *)(pdata) + ((n) >> 5)) \ & (~(0x80000000 >> ((n) & 31)))) \ | ((l_uint32)(val) << (31 - ((n) & 31)))) /*--------------------------------------------------* * 2 bit access * *--------------------------------------------------*/ /*! 2 bit access - get */ #define GET_DATA_DIBIT(pdata, n) \ ((*((const l_uint32 *)(pdata) + ((n) >> 4)) >> (2 * (15 - ((n) & 15)))) & 3) /*! 2 bit access - set value (0 ... 3) */ #define SET_DATA_DIBIT(pdata, n, val) \ *((l_uint32 *)(pdata) + ((n) >> 4)) = \ ((*((l_uint32 *)(pdata) + ((n) >> 4)) \ & (~(0xc0000000 >> (2 * ((n) & 15))))) \ | ((l_uint32)((val) & 3) << (30 - 2 * ((n) & 15)))) /*! 2 bit access - clear */ #define CLEAR_DATA_DIBIT(pdata, n) \ *((l_uint32 *)(pdata) + ((n) >> 4)) &= ~(0xc0000000 >> (2 * ((n) & 15))) /*--------------------------------------------------* * 4 bit access * *--------------------------------------------------*/ /*! 4 bit access - get */ #define GET_DATA_QBIT(pdata, n) \ ((*((const l_uint32 *)(pdata) + ((n) >> 3)) >> (4 * (7 - ((n) & 7)))) & 0xf) /*! 4 bit access - set value (0 ... 15) */ #define SET_DATA_QBIT(pdata, n, val) \ *((l_uint32 *)(pdata) + ((n) >> 3)) = \ ((*((l_uint32 *)(pdata) + ((n) >> 3)) \ & (~(0xf0000000 >> (4 * ((n) & 7))))) \ | ((l_uint32)((val) & 15) << (28 - 4 * ((n) & 7)))) /*! 4 bit access - clear */ #define CLEAR_DATA_QBIT(pdata, n) \ *((l_uint32 *)(pdata) + ((n) >> 3)) &= ~(0xf0000000 >> (4 * ((n) & 7))) /*--------------------------------------------------* * 8 bit access * *--------------------------------------------------*/ #ifdef L_BIG_ENDIAN /*! 8 bit access - get */ #define GET_DATA_BYTE(pdata, n) \ (*((const l_uint8 *)(pdata) + (n))) #else /* L_LITTLE_ENDIAN */ /*! 8 bit access - get */ #define GET_DATA_BYTE(pdata, n) \ (*(l_uint8 *)((l_uintptr_t)((const l_uint8 *)(pdata) + (n)) ^ 3)) #endif /* L_BIG_ENDIAN */ #ifdef L_BIG_ENDIAN /*! 8 bit access - set value (0 ... 255) */ #define SET_DATA_BYTE(pdata, n, val) \ *((l_uint8 *)(pdata) + (n)) = (val) #else /* L_LITTLE_ENDIAN */ /*! 8 bit access - set value (0 ... 255) */ #define SET_DATA_BYTE(pdata, n, val) \ *(l_uint8 *)((l_uintptr_t)((l_uint8 *)(pdata) + (n)) ^ 3) = (val) #endif /* L_BIG_ENDIAN */ /*--------------------------------------------------* * 16 bit access * *--------------------------------------------------*/ #ifdef L_BIG_ENDIAN /*! 16 bit access - get */ #define GET_DATA_TWO_BYTES(pdata, n) \ (*((const l_uint16 *)(pdata) + (n))) #else /* L_LITTLE_ENDIAN */ /*! 16 bit access - get */ #define GET_DATA_TWO_BYTES(pdata, n) \ (*(l_uint16 *)((l_uintptr_t)((const l_uint16 *)(pdata) + (n)) ^ 2)) #endif /* L_BIG_ENDIAN */ #ifdef L_BIG_ENDIAN /*! 16 bit access - set value (0 ... 65535) */ #define SET_DATA_TWO_BYTES(pdata, n, val) \ *((l_uint16 *)(pdata) + (n)) = (val) #else /* L_LITTLE_ENDIAN */ /*! 16 bit access - set value (0 ... 65535) */ #define SET_DATA_TWO_BYTES(pdata, n, val) \ *(l_uint16 *)((l_uintptr_t)((l_uint16 *)(pdata) + (n)) ^ 2) = (val) #endif /* L_BIG_ENDIAN */ /*--------------------------------------------------* * 32 bit access * *--------------------------------------------------*/ /*! 32 bit access - get */ #define GET_DATA_FOUR_BYTES(pdata, n) \ (*((const l_uint32 *)(pdata) + (n))) /*! 32 bit access - set (0 ... 4294967295) */ #define SET_DATA_FOUR_BYTES(pdata, n, val) \ *((l_uint32 *)(pdata) + (n)) = (val) #else /*=============================================================*/ /* Slower: use function calls for all accessors */ /*=============================================================*/ #define GET_DATA_BIT(pdata, n) l_getDataBit(pdata, n) #define SET_DATA_BIT(pdata, n) l_setDataBit(pdata, n) #define CLEAR_DATA_BIT(pdata, n) l_clearDataBit(pdata, n) #define SET_DATA_BIT_VAL(pdata, n, val) l_setDataBitVal(pdata, n, val) #define GET_DATA_DIBIT(pdata, n) l_getDataDibit(pdata, n) #define SET_DATA_DIBIT(pdata, n, val) l_setDataDibit(pdata, n, val) #define CLEAR_DATA_DIBIT(pdata, n) l_clearDataDibit(pdata, n) #define GET_DATA_QBIT(pdata, n) l_getDataQbit(pdata, n) #define SET_DATA_QBIT(pdata, n, val) l_setDataQbit(pdata, n, val) #define CLEAR_DATA_QBIT(pdata, n) l_clearDataQbit(pdata, n) #define GET_DATA_BYTE(pdata, n) l_getDataByte(pdata, n) #define SET_DATA_BYTE(pdata, n, val) l_setDataByte(pdata, n, val) #define GET_DATA_TWO_BYTES(pdata, n) l_getDataTwoBytes(pdata, n) #define SET_DATA_TWO_BYTES(pdata, n, val) l_setDataTwoBytes(pdata, n, val) #define GET_DATA_FOUR_BYTES(pdata, n) l_getDataFourBytes(pdata, n) #define SET_DATA_FOUR_BYTES(pdata, n, val) l_setDataFourBytes(pdata, n, val) #endif /* USE_INLINE_ACCESSORS */ #endif /* LEPTONICA_ARRAY_ACCESS_H */