/*====================================================================* - Copyright (C) 2001 Leptonica. All rights reserved. - - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions - are met: - 1. Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - 2. Redistributions in binary form must reproduce the above - copyright notice, this list of conditions and the following - disclaimer in the documentation and/or other materials - provided with the distribution. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *====================================================================*/ /*! * \file seedfill.c *
 *
 *      Binary seedfill (source: Luc Vincent)
 *               PIX         *pixSeedfillBinary()
 *               PIX         *pixSeedfillBinaryRestricted()
 *               static void  seedfillBinaryLow()
 *
 *      Applications of binary seedfill to find and fill holes,
 *      remove c.c. touching the border and fill bg from border:
 *               PIX         *pixHolesByFilling()
 *               PIX         *pixFillClosedBorders()
 *               PIX         *pixExtractBorderConnComps()
 *               PIX         *pixRemoveBorderConnComps()
 *               PIX         *pixFillBgFromBorder()
 *
 *      Hole-filling of components to bounding rectangle
 *               PIX         *pixFillHolesToBoundingRect()
 *
 *      Gray seedfill (source: Luc Vincent:fast-hybrid-grayscale-reconstruction)
 *               l_int32      pixSeedfillGray()
 *               l_int32      pixSeedfillGrayInv()
 *               static void  seedfillGrayLow()
 *               static void  seedfillGrayInvLow()

 *
 *      Gray seedfill (source: Luc Vincent: sequential-reconstruction algorithm)
 *               l_int32      pixSeedfillGraySimple()
 *               l_int32      pixSeedfillGrayInvSimple()
 *               static void  seedfillGrayLowSimple()
 *               static void  seedfillGrayInvLowSimple()
 *
 *      Gray seedfill variations
 *               PIX         *pixSeedfillGrayBasin()
 *
 *      Distance function (source: Luc Vincent)
 *               PIX         *pixDistanceFunction()
 *               static void  distanceFunctionLow()
 *
 *      Seed spread (based on distance function)
 *               PIX         *pixSeedspread()
 *               static void  seedspreadLow()
 *
 *      Local extrema:
 *               l_int32      pixLocalExtrema()
 *            static l_int32  pixQualifyLocalMinima()
 *               l_int32      pixSelectedLocalExtrema()
 *               PIX         *pixFindEqualValues()
 *
 *      Selection of minima in mask of connected components
 *               PTA         *pixSelectMinInConnComp()
 *
 *      Removal of seeded connected components from a mask
 *               PIX         *pixRemoveSeededComponents()
 *
 *
 *           ITERATIVE RASTER-ORDER SEEDFILL
 *
 *      The basic method in the Vincent seedfill (aka reconstruction)
 *      algorithm is simple.  We describe here the situation for
 *      binary seedfill.  Pixels are sampled in raster order in
 *      the seed image.  If they are 4-connected to ON pixels
 *      either directly above or to the left, and are not masked
 *      out by the mask image, they are turned on (or remain on).
 *      (Ditto for 8-connected, except you need to check 3 pixels
 *      on the previous line as well as the pixel to the left
 *      on the current line.  This is extra computational work
 *      for relatively little gain, so it is preferable
 *      in most situations to use the 4-connected version.)
 *      The algorithm proceeds from UR to LL of the image, and
 *      then reverses and sweeps up from LL to UR.
 *      These double sweeps are iterated until there is no change.
 *      At this point, the seed has entirely filled the region it
 *      is allowed to, as delimited by the mask image.
 *
 *      The grayscale seedfill is a straightforward generalization
 *      of the binary seedfill, and is described in seedfillLowGray().
 *
 *      For some applications, the filled seed will later be OR'd
 *      with the negative of the mask.   This is used, for example,
 *      when you flood fill into a 4-connected region of OFF pixels
 *      and you want the result after those pixels are turned ON.
 *
 *      Note carefully that the mask we use delineates which pixels
 *      are allowed to be ON as the seed is filled.  We will call this
 *      a "filling mask".  As the seed expands, it is repeatedly
 *      ANDed with the filling mask: s & fm.  The process can equivalently
 *      be formulated using the inverse of the filling mask, which
 *      we will call a "blocking mask": bm = ~fm.   As the seed
 *      expands, the blocking mask is repeatedly used to prevent
 *      the seed from expanding into the blocking mask.  This is done
 *      by set subtracting the blocking mask from the expanded seed:
 *      s - bm.  Set subtraction of the blocking mask is equivalent
 *      to ANDing with the inverse of the blocking mask: s & (~bm).
 *      But from the inverse relation between blocking and filling
 *      masks, this is equal to s & fm, which proves the equivalence.
 *
 *      For efficiency, the pixels can be taken in larger units
 *      for processing, but still in raster order.  It is natural
 *      to take them in 32-bit words.  The outline of the work
 *      to be done for 4-cc (not including special cases for boundary
 *      words, such as the first line or the last word in each line)
 *      is as follows.  Let the filling mask be m.  The
 *      seed is to fill "under" the mask; i.e., limited by an AND
 *      with the mask.  Let the current word be w, the word
 *      in the line above be wa, and the previous word in the
 *      current line be wp.   Let t be a temporary word that
 *      is used in computation.  Note that masking is performed by
 *      w & m.  (If we had instead used a "blocking" mask, we
 *      would perform masking by the set subtraction operation,
 *      w - m, which is defined to be w & ~m.)
 *
 *      The entire operation can be implemented with shifts,
 *      logical operations and tests.  For each word in the seed image
 *      there are two steps.  The first step is to OR the word with
 *      the word above and with the rightmost pixel in wp (call it "x").
 *      Because wp is shifted one pixel to its right, "x" is ORed
 *      to the leftmost pixel of w.  We then clip to the ON pixels in
 *      the mask.  The result is
 *               t  <--  (w | wa | x000... ) & m
 *      We've now finished taking data from above and to the left.
 *      The second step is to allow filling to propagate horizontally
 *      in t, always making sure that it is properly masked at each
 *      step.  So if filling can be done (i.e., t is neither all 0s
 *      nor all 1s), iteratively take:
 *           t  <--  (t | (t >> 1) | (t << 1)) & m
 *      until t stops changing.  Then write t back into w.
 *
 *      Finally, the boundary conditions require we note that in doing
 *      the above steps:
 *          (a) The words in the first row have no wa
 *          (b) The first word in each row has no wp in that row
 *          (c) The last word in each row must be masked so that
 *              pixels don't propagate beyond the right edge of the
 *              actual image.  (This is easily accomplished by
 *              setting the out-of-bound pixels in m to OFF.)
 * 
*/ #ifdef HAVE_CONFIG_H #include #endif /* HAVE_CONFIG_H */ #include #include "allheaders.h" struct L_Pixel { l_int32 x; l_int32 y; }; typedef struct L_Pixel L_PIXEL; static void seedfillBinaryLow(l_uint32 *datas, l_int32 hs, l_int32 wpls, l_uint32 *datam, l_int32 hm, l_int32 wplm, l_int32 connectivity); static void seedfillGrayLow(l_uint32 *datas, l_int32 w, l_int32 h, l_int32 wpls, l_uint32 *datam, l_int32 wplm, l_int32 connectivity); static void seedfillGrayInvLow(l_uint32 *datas, l_int32 w, l_int32 h, l_int32 wpls, l_uint32 *datam, l_int32 wplm, l_int32 connectivity); static void seedfillGrayLowSimple(l_uint32 *datas, l_int32 w, l_int32 h, l_int32 wpls, l_uint32 *datam, l_int32 wplm, l_int32 connectivity); static void seedfillGrayInvLowSimple(l_uint32 *datas, l_int32 w, l_int32 h, l_int32 wpls, l_uint32 *datam, l_int32 wplm, l_int32 connectivity); static void distanceFunctionLow(l_uint32 *datad, l_int32 w, l_int32 h, l_int32 d, l_int32 wpld, l_int32 connectivity); static void seedspreadLow(l_uint32 *datad, l_int32 w, l_int32 h, l_int32 wpld, l_uint32 *datat, l_int32 wplt, l_int32 connectivity); static l_int32 pixQualifyLocalMinima(PIX *pixs, PIX *pixm, l_int32 maxval); #ifndef NO_CONSOLE_IO #define DEBUG_PRINT_ITERS 0 #endif /* ~NO_CONSOLE_IO */ /* Two-way (UL --> LR, LR --> UL) sweep iterations; typically need only 4 */ static const l_int32 MaxIters = 40; /*-----------------------------------------------------------------------* * Vincent's Iterative Binary Seedfill method * *-----------------------------------------------------------------------*/ /*! * \brief pixSeedfillBinary() * * \param[in] pixd [optional]; can be null, equal to pixs, * or different from pixs; 1 bpp * \param[in] pixs 1 bpp seed * \param[in] pixm 1 bpp filling mask * \param[in] connectivity 4 or 8 * \return pixd always * *
 * Notes:
 *      (1) This is for binary seedfill (aka "binary reconstruction").
 *      (2) There are 3 cases:
 *            (a) pixd == null (make a new pixd)
 *            (b) pixd == pixs (in-place)
 *            (c) pixd != pixs
 *      (3) If you know the case, use these patterns for clarity:
 *            (a) pixd = pixSeedfillBinary(NULL, pixs, ...);
 *            (b) pixSeedfillBinary(pixs, pixs, ...);
 *            (c) pixSeedfillBinary(pixd, pixs, ...);
 *      (4) The resulting pixd contains the filled seed.  For some
 *          applications you want to OR it with the inverse of
 *          the filling mask.
 *      (5) The input seed and mask images can be different sizes, but
 *          in typical use the difference, if any, would be only
 *          a few pixels in each direction.  If the sizes differ,
 *          the clipping is handled by the low-level function
 *          seedfillBinaryLow().
 * 
*/ PIX * pixSeedfillBinary(PIX *pixd, PIX *pixs, PIX *pixm, l_int32 connectivity) { l_int32 i, boolval; l_int32 hd, hm, wpld, wplm; l_uint32 *datad, *datam; PIX *pixt; PROCNAME("pixSeedfillBinary"); if (!pixs || pixGetDepth(pixs) != 1) return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", procName, pixd); if (!pixm || pixGetDepth(pixm) != 1) return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", procName, pixd); if (connectivity != 4 && connectivity != 8) return (PIX *)ERROR_PTR("connectivity not in {4,8}", procName, pixd); /* Prepare pixd as a copy of pixs if not identical */ if ((pixd = pixCopy(pixd, pixs)) == NULL) return (PIX *)ERROR_PTR("pixd not made", procName, NULL); pixSetPadBits(pixd, 0); /* be safe: */ pixSetPadBits(pixm, 0); /* avoid using uninitialized memory */ /* pixt is used to test for completion */ if ((pixt = pixCreateTemplate(pixs)) == NULL) return (PIX *)ERROR_PTR("pixt not made", procName, pixd); hd = pixGetHeight(pixd); hm = pixGetHeight(pixm); /* included so seedfillBinaryLow() can clip */ datad = pixGetData(pixd); datam = pixGetData(pixm); wpld = pixGetWpl(pixd); wplm = pixGetWpl(pixm); for (i = 0; i < MaxIters; i++) { pixCopy(pixt, pixd); seedfillBinaryLow(datad, hd, wpld, datam, hm, wplm, connectivity); pixEqual(pixd, pixt, &boolval); if (boolval == 1) { #if DEBUG_PRINT_ITERS lept_stderr("Binary seed fill converged: %d iters\n", i + 1); #endif /* DEBUG_PRINT_ITERS */ break; } } pixDestroy(&pixt); return pixd; } /*! * \brief pixSeedfillBinaryRestricted() * * \param[in] pixd [optional]; can be null, equal to pixs, * or different from pixs; 1 bpp * \param[in] pixs 1 bpp seed * \param[in] pixm 1 bpp filling mask * \param[in] connectivity 4 or 8 * \param[in] xmax max distance in x direction of fill into mask * \param[in] ymax max distance in y direction of fill into mask * \return pixd always * *
 * Notes:
 *      (1) See usage for pixSeedfillBinary(), which has unrestricted fill.
 *          In pixSeedfillBinary(), the filling distance is unrestricted
 *          and can be larger than pixs, depending on the topology of
 *          th mask.
 *      (2) There are occasions where it is useful not to permit the
 *          fill to go more than a certain distance into the mask.
 *          %xmax specifies the maximum horizontal distance allowed
 *          in the fill; %ymax does likewise in the vertical direction.
 *      (3) Operationally, the max "distance" allowed for the fill
 *          is a linear distance from the original seed, independent
 *          of the actual mask topology.
 *      (4) Another formulation of this problem, not implemented,
 *          would use the manhattan distance from the seed, as
 *          determined by a breadth-first search starting at the seed
 *          boundaries and working outward where the mask fg allows.
 *          How this might use the constraints of separate xmax and ymax
 *          is not clear.
 * 
*/ PIX * pixSeedfillBinaryRestricted(PIX *pixd, PIX *pixs, PIX *pixm, l_int32 connectivity, l_int32 xmax, l_int32 ymax) { l_int32 w, h; PIX *pix1, *pix2; PROCNAME("pixSeedfillBinaryRestricted"); if (!pixs || pixGetDepth(pixs) != 1) return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", procName, pixd); if (!pixm || pixGetDepth(pixm) != 1) return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", procName, pixd); if (connectivity != 4 && connectivity != 8) return (PIX *)ERROR_PTR("connectivity not in {4,8}", procName, pixd); if (xmax == 0 && ymax == 0) /* no filling permitted */ return pixClone(pixs); if (xmax < 0 || ymax < 0) { L_ERROR("xmax and ymax must be non-negative", procName); return pixClone(pixs); } /* Full fill from the seed into the mask. */ if ((pix1 = pixSeedfillBinary(NULL, pixs, pixm, connectivity)) == NULL) return (PIX *)ERROR_PTR("pix1 not made", procName, pixd); /* Dilate the seed. This gives the maximal region where changes * are permitted. Invert to get the region where pixs is * not allowed to change. */ pix2 = pixDilateCompBrick(NULL, pixs, 2 * xmax + 1, 2 * ymax + 1); pixInvert(pix2, pix2); /* Blank the region of pix1 specified by the fg of pix2. * This is not yet the final result, because it may have fg pixels * that are not accessible from the seed in the restricted distance. * For example, such pixels may be connected to the original seed, * but through a path that goes outside the permitted region. */ pixGetDimensions(pixs, &w, &h, NULL); pixRasterop(pix1, 0, 0, w, h, PIX_DST & PIX_NOT(PIX_SRC), pix2, 0, 0); /* To get the accessible pixels in the restricted region, do * a second seedfill from the original seed, using pix1 as * a mask. The result, in pixd, will not have any bad fg * pixels that were in pix1. */ pixd = pixSeedfillBinary(pixd, pixs, pix1, connectivity); pixDestroy(&pix1); pixDestroy(&pix2); return pixd; } /*! * \brief seedfillBinaryLow() * * Notes: * (1) This is an in-place fill, where the seed image is * filled, clipping to the filling mask, in one full * cycle of UL -> LR and LR -> UL raster scans. * (2) Assume the mask is a filling mask, not a blocking mask. * (3) Assume that the RHS pad bits of the mask * are properly set to 0. * (4) Clip to the smallest dimensions to avoid invalid reads. */ static void seedfillBinaryLow(l_uint32 *datas, l_int32 hs, l_int32 wpls, l_uint32 *datam, l_int32 hm, l_int32 wplm, l_int32 connectivity) { l_int32 i, j, h, wpl; l_uint32 word, mask; l_uint32 wordabove, wordleft, wordbelow, wordright; l_uint32 wordprev; /* test against this in previous iteration */ l_uint32 *lines, *linem; PROCNAME("seedfillBinaryLow"); h = L_MIN(hs, hm); wpl = L_MIN(wpls, wplm); switch (connectivity) { case 4: /* UL --> LR scan */ for (i = 0; i < h; i++) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = 0; j < wpl; j++) { word = *(lines + j); mask = *(linem + j); /* OR from word above and from word to left; mask */ if (i > 0) { wordabove = *(lines - wpls + j); word |= wordabove; } if (j > 0) { wordleft = *(lines + j - 1); word |= wordleft << 31; } word &= mask; /* No need to fill horizontally? */ if (!word || !(~word)) { *(lines + j) = word; continue; } while (1) { wordprev = word; word = (word | (word >> 1) | (word << 1)) & mask; if ((word ^ wordprev) == 0) { *(lines + j) = word; break; } } } } /* LR --> UL scan */ for (i = h - 1; i >= 0; i--) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = wpl - 1; j >= 0; j--) { word = *(lines + j); mask = *(linem + j); /* OR from word below and from word to right; mask */ if (i < h - 1) { wordbelow = *(lines + wpls + j); word |= wordbelow; } if (j < wpl - 1) { wordright = *(lines + j + 1); word |= wordright >> 31; } word &= mask; /* No need to fill horizontally? */ if (!word || !(~word)) { *(lines + j) = word; continue; } while (1) { wordprev = word; word = (word | (word >> 1) | (word << 1)) & mask; if ((word ^ wordprev) == 0) { *(lines + j) = word; break; } } } } break; case 8: /* UL --> LR scan */ for (i = 0; i < h; i++) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = 0; j < wpl; j++) { word = *(lines + j); mask = *(linem + j); /* OR from words above and from word to left; mask */ if (i > 0) { wordabove = *(lines - wpls + j); word |= (wordabove | (wordabove << 1) | (wordabove >> 1)); if (j > 0) word |= (*(lines - wpls + j - 1)) << 31; if (j < wpl - 1) word |= (*(lines - wpls + j + 1)) >> 31; } if (j > 0) { wordleft = *(lines + j - 1); word |= wordleft << 31; } word &= mask; /* No need to fill horizontally? */ if (!word || !(~word)) { *(lines + j) = word; continue; } while (1) { wordprev = word; word = (word | (word >> 1) | (word << 1)) & mask; if ((word ^ wordprev) == 0) { *(lines + j) = word; break; } } } } /* LR --> UL scan */ for (i = h - 1; i >= 0; i--) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = wpl - 1; j >= 0; j--) { word = *(lines + j); mask = *(linem + j); /* OR from words below and from word to right; mask */ if (i < h - 1) { wordbelow = *(lines + wpls + j); word |= (wordbelow | (wordbelow << 1) | (wordbelow >> 1)); if (j > 0) word |= (*(lines + wpls + j - 1)) << 31; if (j < wpl - 1) word |= (*(lines + wpls + j + 1)) >> 31; } if (j < wpl - 1) { wordright = *(lines + j + 1); word |= wordright >> 31; } word &= mask; /* No need to fill horizontally? */ if (!word || !(~word)) { *(lines + j) = word; continue; } while (1) { wordprev = word; word = (word | (word >> 1) | (word << 1)) & mask; if ((word ^ wordprev) == 0) { *(lines + j) = word; break; } } } } break; default: L_ERROR("connectivity must be 4 or 8\n", procName); } } /*! * \brief pixHolesByFilling() * * \param[in] pixs 1 bpp * \param[in] connectivity 4 or 8 * \return pixd inverted image of all holes, or NULL on error * * Action: * 1 Start with 1-pixel black border on otherwise white pixd * 2 Use the inverted pixs as the filling mask to fill in * all the pixels from the border to the pixs foreground * 3 OR the result with pixs to have an image with all * ON pixels except for the holes. * 4 Invert the result to get the holes as foreground * *
 * Notes:
 *     (1) To get 4-c.c. holes of the 8-c.c. as foreground, use
 *         4-connected filling; to get 8-c.c. holes of the 4-c.c.
 *         as foreground, use 8-connected filling.
 * 
*/ PIX * pixHolesByFilling(PIX *pixs, l_int32 connectivity) { PIX *pixsi, *pixd; PROCNAME("pixHolesByFilling"); if (!pixs || pixGetDepth(pixs) != 1) return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", procName, NULL); if (connectivity != 4 && connectivity != 8) return (PIX *)ERROR_PTR("connectivity not 4 or 8", procName, NULL); if ((pixd = pixCreateTemplate(pixs)) == NULL) return (PIX *)ERROR_PTR("pixd not made", procName, NULL); if ((pixsi = pixInvert(NULL, pixs)) == NULL) { pixDestroy(&pixd); return (PIX *)ERROR_PTR("pixsi not made", procName, NULL); } pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET); pixSeedfillBinary(pixd, pixd, pixsi, connectivity); pixOr(pixd, pixd, pixs); pixInvert(pixd, pixd); pixDestroy(&pixsi); return pixd; } /*! * \brief pixFillClosedBorders() * * \param[in] pixs 1 bpp * \param[in] connectivity filling connectivity 4 or 8 * \return pixd all topologically outer closed borders are filled * as connected comonents, or NULL on error * *
 * Notes:
 *      (1) Start with 1-pixel black border on otherwise white pixd
 *      (2) Subtract input pixs to remove border pixels that were
 *          also on the closed border
 *      (3) Use the inverted pixs as the filling mask to fill in
 *          all the pixels from the outer border to the closed border
 *          on pixs
 *      (4) Invert the result to get the filled component, including
 *          the input border
 *      (5) If the borders are 4-c.c., use 8-c.c. filling, and v.v.
 *      (6) Closed borders within c.c. that represent holes, etc., are filled.
 * 
*/ PIX * pixFillClosedBorders(PIX *pixs, l_int32 connectivity) { PIX *pixsi, *pixd; PROCNAME("pixFillClosedBorders"); if (!pixs || pixGetDepth(pixs) != 1) return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", procName, NULL); if (connectivity != 4 && connectivity != 8) return (PIX *)ERROR_PTR("connectivity not 4 or 8", procName, NULL); if ((pixd = pixCreateTemplate(pixs)) == NULL) return (PIX *)ERROR_PTR("pixd not made", procName, NULL); pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET); pixSubtract(pixd, pixd, pixs); if ((pixsi = pixInvert(NULL, pixs)) == NULL) { pixDestroy(&pixd); return (PIX *)ERROR_PTR("pixsi not made", procName, NULL); } pixSeedfillBinary(pixd, pixd, pixsi, connectivity); pixInvert(pixd, pixd); pixDestroy(&pixsi); return pixd; } /*! * \brief pixExtractBorderConnComps() * * \param[in] pixs 1 bpp * \param[in] connectivity filling connectivity 4 or 8 * \return pixd all pixels in the src that are in connected * components touching the border, or NULL on error */ PIX * pixExtractBorderConnComps(PIX *pixs, l_int32 connectivity) { PIX *pixd; PROCNAME("pixExtractBorderConnComps"); if (!pixs || pixGetDepth(pixs) != 1) return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", procName, NULL); if (connectivity != 4 && connectivity != 8) return (PIX *)ERROR_PTR("connectivity not 4 or 8", procName, NULL); /* Start with 1 pixel wide black border as seed in pixd */ if ((pixd = pixCreateTemplate(pixs)) == NULL) return (PIX *)ERROR_PTR("pixd not made", procName, NULL); pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET); /* Fill in pixd from the seed, using pixs as the filling mask. * This fills all components from pixs that are touching the border. */ pixSeedfillBinary(pixd, pixd, pixs, connectivity); return pixd; } /*! * \brief pixRemoveBorderConnComps() * * \param[in] pixs 1 bpp * \param[in] connectivity filling connectivity 4 or 8 * \return pixd all pixels in the src that are not touching the * border or NULL on error * *
 * Notes:
 *      (1) This removes all fg components touching the border.
 * 
*/ PIX * pixRemoveBorderConnComps(PIX *pixs, l_int32 connectivity) { PIX *pixd; PROCNAME("pixRemoveBorderConnComps"); if (!pixs || pixGetDepth(pixs) != 1) return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", procName, NULL); if (connectivity != 4 && connectivity != 8) return (PIX *)ERROR_PTR("connectivity not 4 or 8", procName, NULL); /* Fill from a 1 pixel wide seed at the border into all components * in pixs (the filling mask) that are touching the border */ pixd = pixExtractBorderConnComps(pixs, connectivity); /* Save in pixd only those components in pixs not touching the border */ pixXor(pixd, pixd, pixs); return pixd; } /*! * \brief pixFillBgFromBorder() * * \param[in] pixs 1 bpp * \param[in] connectivity filling connectivity 4 or 8 * \return pixd with the background c.c. touching the border * filled to foreground, or NULL on error * *
 * Notes:
 *      (1) This fills all bg components touching the border to fg.
 *          It is the photometric inverse of pixRemoveBorderConnComps().
 *      (2) Invert the result to get the "holes" left after this fill.
 *          This can be done multiple times, extracting holes within
 *          holes after each pair of fillings.  Specifically, this code
 *          peels away n successive embeddings of components:
 * \code
 *              pix1 = 
 *              for (i = 0; i < 2 * n; i++) {
 *                   pix2 = pixFillBgFromBorder(pix1, 8);
 *                   pixInvert(pix2, pix2);
 *                   pixDestroy(&pix1);
 *                   pix1 = pix2;
 *              }
 * \endcode
 * 
*/ PIX * pixFillBgFromBorder(PIX *pixs, l_int32 connectivity) { PIX *pixd; PROCNAME("pixFillBgFromBorder"); if (!pixs || pixGetDepth(pixs) != 1) return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", procName, NULL); if (connectivity != 4 && connectivity != 8) return (PIX *)ERROR_PTR("connectivity not 4 or 8", procName, NULL); /* Invert to turn bg touching the border to a fg component. * Extract this by filling from a 1 pixel wide seed at the border. */ pixInvert(pixs, pixs); pixd = pixExtractBorderConnComps(pixs, connectivity); pixInvert(pixs, pixs); /* restore pixs */ /* Bit-or the filled bg component with pixs */ pixOr(pixd, pixd, pixs); return pixd; } /*-----------------------------------------------------------------------* * Hole-filling of components to bounding rectangle * *-----------------------------------------------------------------------*/ /*! * \brief pixFillHolesToBoundingRect() * * \param[in] pixs 1 bpp * \param[in] minsize min number of pixels in the hole * \param[in] maxhfract max hole area as fraction of fg pixels in the cc * \param[in] minfgfract min fg area as fraction of bounding rectangle * \return pixd with some holes possibly filled and some c.c. possibly * expanded to their bounding rects, or NULL on error * *
 * Notes:
 *      (1) This does not fill holes that are smaller in area than 'minsize'.
 *          Use %minsize = 0 and %maxhfract = 1.0 to fill all holes.
 *      (2) This does not fill holes with an area larger than
 *          %maxhfract times the fg area of the c.c.
 *          Use 1.0 to fill all holes.
 *      (3) This does not expand the fg of the c.c. to bounding rect if
 *          the fg area is less than %minfgfract times the area of the
 *          bounding rect.  Use 1.0 to skip expanding to the bounding rect.
 *      (4) The decisions are made as follows:
 *           ~ Decide if we are filling the holes; if so, when using
 *             the fg area, include the filled holes.
 *           ~ Decide based on the fg area if we are filling to a bounding rect.
 *             If so, do it.
 *             If not, fill the holes if the condition is satisfied.
 *      (5) The choice of %minsize depends on the resolution.
 *      (6) For solidifying image mask regions on printed materials,
 *          which tend to be rectangular, values for %maxhfract
 *          and %minfgfract around 0.5 are reasonable.
 * 
*/ PIX * pixFillHolesToBoundingRect(PIX *pixs, l_int32 minsize, l_float32 maxhfract, l_float32 minfgfract) { l_int32 i, x, y, w, h, n, nfg, nh, ntot, area; l_int32 *tab; l_float32 hfract; /* measured hole fraction */ l_float32 fgfract; /* measured fg fraction */ BOXA *boxa; PIX *pixd, *pixfg, *pixh; PIXA *pixa; PROCNAME("pixFillHolesToBoundingRect"); if (!pixs || pixGetDepth(pixs) != 1) return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", procName, NULL); maxhfract = L_MIN(L_MAX(maxhfract, 0.0), 1.0); minfgfract = L_MIN(L_MAX(minfgfract, 0.0), 1.0); pixd = pixCopy(NULL, pixs); boxa = pixConnComp(pixd, &pixa, 8); n = boxaGetCount(boxa); tab = makePixelSumTab8(); for (i = 0; i < n; i++) { boxaGetBoxGeometry(boxa, i, &x, &y, &w, &h); area = w * h; if (area < minsize) continue; pixfg = pixaGetPix(pixa, i, L_COPY); pixh = pixHolesByFilling(pixfg, 4); /* holes only */ pixCountPixels(pixfg, &nfg, tab); pixCountPixels(pixh, &nh, tab); hfract = (l_float32)nh / (l_float32)nfg; ntot = nfg; if (hfract <= maxhfract) /* we will fill the holes (at least) */ ntot = nfg + nh; fgfract = (l_float32)ntot / (l_float32)area; if (fgfract >= minfgfract) { /* fill to bounding rect */ pixSetAll(pixfg); pixRasterop(pixd, x, y, w, h, PIX_SRC, pixfg, 0, 0); } else if (hfract <= maxhfract) { /* fill just the holes */ pixRasterop(pixd, x, y, w, h, PIX_DST | PIX_SRC , pixh, 0, 0); } pixDestroy(&pixfg); pixDestroy(&pixh); } boxaDestroy(&boxa); pixaDestroy(&pixa); LEPT_FREE(tab); return pixd; } /*-----------------------------------------------------------------------* * Vincent's hybrid Grayscale Seedfill method * *-----------------------------------------------------------------------*/ /*! * \brief pixSeedfillGray() * * \param[in] pixs 8 bpp seed; filled in place * \param[in] pixm 8 bpp filling mask * \param[in] connectivity 4 or 8 * \return 0 if OK, 1 on error * *
 * Notes:
 *      (1) This is an in-place filling operation on the seed, pixs,
 *          where the clipping mask is always above or at the level
 *          of the seed as it is filled.
 *      (2) For details of the operation, see the description in
 *          seedfillGrayLow() and the code there.
 *      (3) As an example of use, see the description in pixHDome().
 *          There, the seed is an image where each pixel is a fixed
 *          amount smaller than the corresponding mask pixel.
 *      (4) Reference paper :
 *            L. Vincent, Morphological grayscale reconstruction in image
 *            analysis: applications and efficient algorithms, IEEE Transactions
 *            on  Image Processing, vol. 2, no. 2, pp. 176-201, 1993.
 * 
*/ l_ok pixSeedfillGray(PIX *pixs, PIX *pixm, l_int32 connectivity) { l_int32 h, w, wpls, wplm; l_uint32 *datas, *datam; PROCNAME("pixSeedfillGray"); if (!pixs || pixGetDepth(pixs) != 8) return ERROR_INT("pixs not defined or not 8 bpp", procName, 1); if (!pixm || pixGetDepth(pixm) != 8) return ERROR_INT("pixm not defined or not 8 bpp", procName, 1); if (connectivity != 4 && connectivity != 8) return ERROR_INT("connectivity not in {4,8}", procName, 1); /* Make sure the sizes of seed and mask images are the same */ if (pixSizesEqual(pixs, pixm) == 0) return ERROR_INT("pixs and pixm sizes differ", procName, 1); datas = pixGetData(pixs); datam = pixGetData(pixm); wpls = pixGetWpl(pixs); wplm = pixGetWpl(pixm); pixGetDimensions(pixs, &w, &h, NULL); seedfillGrayLow(datas, w, h, wpls, datam, wplm, connectivity); return 0; } /*! * \brief pixSeedfillGrayInv() * * \param[in] pixs 8 bpp seed; filled in place * \param[in] pixm 8 bpp filling mask * \param[in] connectivity 4 or 8 * \return 0 if OK, 1 on error * *
 * Notes:
 *      (1) This is an in-place filling operation on the seed, pixs,
 *          where the clipping mask is always below or at the level
 *          of the seed as it is filled.  Think of filling up a basin
 *          to a particular level, given by the maximum seed value
 *          in the basin.  Outside the filled region, the mask
 *          is above the filling level.
 *      (2) Contrast this with pixSeedfillGray(), where the clipping mask
 *          is always above or at the level of the fill.  An example
 *          of its use is the hdome fill, where the seed is an image
 *          where each pixel is a fixed amount smaller than the
 *          corresponding mask pixel.
 *      (3) The basin fill, pixSeedfillGrayBasin(), is a special case
 *          where the seed pixel values are generated from the mask,
 *          and where the implementation uses pixSeedfillGray() by
 *          inverting both the seed and mask.
 * 
*/ l_ok pixSeedfillGrayInv(PIX *pixs, PIX *pixm, l_int32 connectivity) { l_int32 h, w, wpls, wplm; l_uint32 *datas, *datam; PROCNAME("pixSeedfillGrayInv"); if (!pixs || pixGetDepth(pixs) != 8) return ERROR_INT("pixs not defined or not 8 bpp", procName, 1); if (!pixm || pixGetDepth(pixm) != 8) return ERROR_INT("pixm not defined or not 8 bpp", procName, 1); if (connectivity != 4 && connectivity != 8) return ERROR_INT("connectivity not in {4,8}", procName, 1); /* Make sure the sizes of seed and mask images are the same */ if (pixSizesEqual(pixs, pixm) == 0) return ERROR_INT("pixs and pixm sizes differ", procName, 1); datas = pixGetData(pixs); datam = pixGetData(pixm); wpls = pixGetWpl(pixs); wplm = pixGetWpl(pixm); pixGetDimensions(pixs, &w, &h, NULL); seedfillGrayInvLow(datas, w, h, wpls, datam, wplm, connectivity); return 0; } /*! * \brief seedfillGrayLow() * * Notes: * (1) The pixels are numbered as follows: * 1 2 3 * 4 x 5 * 6 7 8 * This low-level filling operation consists of two scans, * raster and anti-raster, covering the entire seed image. * This is followed by a breadth-first propagation operation to * complete the fill. * During the anti-raster scan, every pixel p whose current value * could still be propagated after the anti-raster scan is put into * the FIFO queue. * The propagation step is a breadth-first fill to completion. * Unlike the simple grayscale seedfill pixSeedfillGraySimple(), * where at least two full raster/anti-raster iterations are required * for completion and verification, the hybrid method uses only a * single raster/anti-raster set of scans. * (2) The filling action can be visualized from the following example. * Suppose the mask, which clips the fill, is a sombrero-shaped * surface, where the highest point is 200 and the low pixels * around the rim are 30. Beyond the rim, the mask goes up a bit. * Suppose the seed, which is filled, consists of a single point * of height 150, located below the max of the mask, with * the rest 0. Then in the raster scan, nothing happens until * the high seed point is encountered, and then this value is * propagated right and down, until it hits the side of the * sombrero. The seed can never exceed the mask, so it fills * to the rim, going lower along the mask surface. When it * passes the rim, the seed continues to fill at the rim * height to the edge of the seed image. Then on the * anti-raster scan, the seed fills flat inside the * sombrero to the upper and left, and then out from the * rim as before. The final result has a seed that is * flat outside the rim, and inside it fills the sombrero * but only up to 150. If the rim height varies, the * filled seed outside the rim will be at the highest * point on the rim, which is a saddle point on the rim. * (3) Reference paper : * L. Vincent, Morphological grayscale reconstruction in image * analysis: applications and efficient algorithms, IEEE Transactions * on Image Processing, vol. 2, no. 2, pp. 176-201, 1993. */ static void seedfillGrayLow(l_uint32 *datas, l_int32 w, l_int32 h, l_int32 wpls, l_uint32 *datam, l_int32 wplm, l_int32 connectivity) { l_uint8 val1, val2, val3, val4, val5, val6, val7, val8; l_uint8 val, maxval, maskval, boolval; l_int32 i, j, imax, jmax, queue_size; l_uint32 *lines, *linem; L_PIXEL *pixel; L_QUEUE *lq_pixel; PROCNAME("seedfillGrayLow"); if (connectivity != 4 && connectivity != 8) { L_ERROR("connectivity must be 4 or 8\n", procName); return; } imax = h - 1; jmax = w - 1; /* In the worst case, most of the pixels could be pushed * onto the FIFO queue during anti-raster scan. However this * will rarely happen, and we initialize the queue ptr size to * the image perimeter. */ lq_pixel = lqueueCreate(2 * (w + h)); switch (connectivity) { case 4: /* UL --> LR scan (Raster Order) * If I : mask image * J : marker image * Let p be the currect pixel; * J(p) <- (max{J(p) union J(p) neighbors in raster order}) * intersection I(p) */ for (i = 0; i < h; i++) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = 0; j < w; j++) { if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { maxval = 0; if (i > 0) maxval = GET_DATA_BYTE(lines - wpls, j); if (j > 0) { val4 = GET_DATA_BYTE(lines, j - 1); maxval = L_MAX(maxval, val4); } val = GET_DATA_BYTE(lines, j); maxval = L_MAX(maxval, val); val = L_MIN(maxval, maskval); SET_DATA_BYTE(lines, j, val); } } } /* LR --> UL scan (anti-raster order) * Let p be the currect pixel; * J(p) <- (max{J(p) union J(p) neighbors in anti-raster order}) * intersection I(p) */ for (i = imax; i >= 0; i--) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = jmax; j >= 0; j--) { boolval = FALSE; if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { maxval = 0; if (i < imax) maxval = GET_DATA_BYTE(lines + wpls, j); if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); maxval = L_MAX(maxval, val5); } val = GET_DATA_BYTE(lines, j); maxval = L_MAX(maxval, val); val = L_MIN(maxval, maskval); SET_DATA_BYTE(lines, j, val); /* * If there exists a point (q) which belongs to J(p) * neighbors in anti-raster order such that J(q) < J(p) * and J(q) < I(q) then * fifo_add(p) */ if (i < imax) { val7 = GET_DATA_BYTE(lines + wpls, j); if ((val7 < val) && (val7 < GET_DATA_BYTE(linem + wplm, j))) { boolval = TRUE; } } if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); if (!boolval && (val5 < val) && (val5 < GET_DATA_BYTE(linem, j + 1))) { boolval = TRUE; } } if (boolval) { pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i; pixel->y = j; lqueueAdd(lq_pixel, pixel); } } } } /* Propagation step: * while fifo_empty = false * p <- fifo_first() * for every pixel (q) belong to neighbors of (p) * if J(q) < J(p) and I(q) != J(q) * J(q) <- min(J(p), I(q)); * fifo_add(q); * end * end * end */ queue_size = lqueueGetCount(lq_pixel); while (queue_size) { pixel = (L_PIXEL *)lqueueRemove(lq_pixel); i = pixel->x; j = pixel->y; LEPT_FREE(pixel); lines = datas + i * wpls; linem = datam + i * wplm; if ((val = GET_DATA_BYTE(lines, j)) > 0) { if (i > 0) { val2 = GET_DATA_BYTE(lines - wpls, j); maskval = GET_DATA_BYTE(linem - wplm, j); if (val > val2 && val2 != maskval) { SET_DATA_BYTE(lines - wpls, j, L_MIN(val, maskval)); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i - 1; pixel->y = j; lqueueAdd(lq_pixel, pixel); } } if (j > 0) { val4 = GET_DATA_BYTE(lines, j - 1); maskval = GET_DATA_BYTE(linem, j - 1); if (val > val4 && val4 != maskval) { SET_DATA_BYTE(lines, j - 1, L_MIN(val, maskval)); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i; pixel->y = j - 1; lqueueAdd(lq_pixel, pixel); } } if (i < imax) { val7 = GET_DATA_BYTE(lines + wpls, j); maskval = GET_DATA_BYTE(linem + wplm, j); if (val > val7 && val7 != maskval) { SET_DATA_BYTE(lines + wpls, j, L_MIN(val, maskval)); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i + 1; pixel->y = j; lqueueAdd(lq_pixel, pixel); } } if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); maskval = GET_DATA_BYTE(linem, j + 1); if (val > val5 && val5 != maskval) { SET_DATA_BYTE(lines, j + 1, L_MIN(val, maskval)); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i; pixel->y = j + 1; lqueueAdd(lq_pixel, pixel); } } } queue_size = lqueueGetCount(lq_pixel); } break; case 8: /* UL --> LR scan (Raster Order) * If I : mask image * J : marker image * Let p be the currect pixel; * J(p) <- (max{J(p) union J(p) neighbors in raster order}) * intersection I(p) */ for (i = 0; i < h; i++) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = 0; j < w; j++) { if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { maxval = 0; if (i > 0) { if (j > 0) maxval = GET_DATA_BYTE(lines - wpls, j - 1); if (j < jmax) { val3 = GET_DATA_BYTE(lines - wpls, j + 1); maxval = L_MAX(maxval, val3); } val2 = GET_DATA_BYTE(lines - wpls, j); maxval = L_MAX(maxval, val2); } if (j > 0) { val4 = GET_DATA_BYTE(lines, j - 1); maxval = L_MAX(maxval, val4); } val = GET_DATA_BYTE(lines, j); maxval = L_MAX(maxval, val); val = L_MIN(maxval, maskval); SET_DATA_BYTE(lines, j, val); } } } /* LR --> UL scan (anti-raster order) * Let p be the currect pixel; * J(p) <- (max{J(p) union J(p) neighbors in anti-raster order}) * intersection I(p) */ for (i = imax; i >= 0; i--) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = jmax; j >= 0; j--) { boolval = FALSE; if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { maxval = 0; if (i < imax) { if (j > 0) { maxval = GET_DATA_BYTE(lines + wpls, j - 1); } if (j < jmax) { val8 = GET_DATA_BYTE(lines + wpls, j + 1); maxval = L_MAX(maxval, val8); } val7 = GET_DATA_BYTE(lines + wpls, j); maxval = L_MAX(maxval, val7); } if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); maxval = L_MAX(maxval, val5); } val = GET_DATA_BYTE(lines, j); maxval = L_MAX(maxval, val); val = L_MIN(maxval, maskval); SET_DATA_BYTE(lines, j, val); /* If there exists a point (q) which belongs to J(p) * neighbors in anti-raster order such that J(q) < J(p) * and J(q) < I(q) then * fifo_add(p) */ if (i < imax) { if (j > 0) { val6 = GET_DATA_BYTE(lines + wpls, j - 1); if ((val6 < val) && (val6 < GET_DATA_BYTE(linem + wplm, j - 1))) { boolval = TRUE; } } if (j < jmax) { val8 = GET_DATA_BYTE(lines + wpls, j + 1); if (!boolval && (val8 < val) && (val8 < GET_DATA_BYTE(linem + wplm, j + 1))) { boolval = TRUE; } } val7 = GET_DATA_BYTE(lines + wpls, j); if (!boolval && (val7 < val) && (val7 < GET_DATA_BYTE(linem + wplm, j))) { boolval = TRUE; } } if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); if (!boolval && (val5 < val) && (val5 < GET_DATA_BYTE(linem, j + 1))) { boolval = TRUE; } } if (boolval) { pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i; pixel->y = j; lqueueAdd(lq_pixel, pixel); } } } } /* Propagation step: * while fifo_empty = false * p <- fifo_first() * for every pixel (q) belong to neighbors of (p) * if J(q) < J(p) and I(q) != J(q) * J(q) <- min(J(p), I(q)); * fifo_add(q); * end * end * end */ queue_size = lqueueGetCount(lq_pixel); while (queue_size) { pixel = (L_PIXEL *)lqueueRemove(lq_pixel); i = pixel->x; j = pixel->y; LEPT_FREE(pixel); lines = datas + i * wpls; linem = datam + i * wplm; if ((val = GET_DATA_BYTE(lines, j)) > 0) { if (i > 0) { if (j > 0) { val1 = GET_DATA_BYTE(lines - wpls, j - 1); maskval = GET_DATA_BYTE(linem - wplm, j - 1); if (val > val1 && val1 != maskval) { SET_DATA_BYTE(lines - wpls, j - 1, L_MIN(val, maskval)); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i - 1; pixel->y = j - 1; lqueueAdd(lq_pixel, pixel); } } if (j < jmax) { val3 = GET_DATA_BYTE(lines - wpls, j + 1); maskval = GET_DATA_BYTE(linem - wplm, j + 1); if (val > val3 && val3 != maskval) { SET_DATA_BYTE(lines - wpls, j + 1, L_MIN(val, maskval)); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i - 1; pixel->y = j + 1; lqueueAdd(lq_pixel, pixel); } } val2 = GET_DATA_BYTE(lines - wpls, j); maskval = GET_DATA_BYTE(linem - wplm, j); if (val > val2 && val2 != maskval) { SET_DATA_BYTE(lines - wpls, j, L_MIN(val, maskval)); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i - 1; pixel->y = j; lqueueAdd(lq_pixel, pixel); } } if (j > 0) { val4 = GET_DATA_BYTE(lines, j - 1); maskval = GET_DATA_BYTE(linem, j - 1); if (val > val4 && val4 != maskval) { SET_DATA_BYTE(lines, j - 1, L_MIN(val, maskval)); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i; pixel->y = j - 1; lqueueAdd(lq_pixel, pixel); } } if (i < imax) { if (j > 0) { val6 = GET_DATA_BYTE(lines + wpls, j - 1); maskval = GET_DATA_BYTE(linem + wplm, j - 1); if (val > val6 && val6 != maskval) { SET_DATA_BYTE(lines + wpls, j - 1, L_MIN(val, maskval)); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i + 1; pixel->y = j - 1; lqueueAdd(lq_pixel, pixel); } } if (j < jmax) { val8 = GET_DATA_BYTE(lines + wpls, j + 1); maskval = GET_DATA_BYTE(linem + wplm, j + 1); if (val > val8 && val8 != maskval) { SET_DATA_BYTE(lines + wpls, j + 1, L_MIN(val, maskval)); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i + 1; pixel->y = j + 1; lqueueAdd(lq_pixel, pixel); } } val7 = GET_DATA_BYTE(lines + wpls, j); maskval = GET_DATA_BYTE(linem + wplm, j); if (val > val7 && val7 != maskval) { SET_DATA_BYTE(lines + wpls, j, L_MIN(val, maskval)); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i + 1; pixel->y = j; lqueueAdd(lq_pixel, pixel); } } if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); maskval = GET_DATA_BYTE(linem, j + 1); if (val > val5 && val5 != maskval) { SET_DATA_BYTE(lines, j + 1, L_MIN(val, maskval)); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i; pixel->y = j + 1; lqueueAdd(lq_pixel, pixel); } } } queue_size = lqueueGetCount(lq_pixel); } break; default: L_ERROR("shouldn't get here!\n", procName); } lqueueDestroy(&lq_pixel, TRUE); } /*! * \brief seedfillGrayInvLow() * * Notes: * (1) The pixels are numbered as follows: * 1 2 3 * 4 x 5 * 6 7 8 * This low-level filling operation consists of two scans, * raster and anti-raster, covering the entire seed image. * During the anti-raster scan, every pixel p such that its * current value could still be propagated during the next * raster scanning is put into the FIFO-queue. * Next step is the propagation step where where we update * and propagate the values using FIFO structure created in * anti-raster scan. * (2) The "Inv" signifies the fact that in this case, filling * of the seed only takes place when the seed value is * greater than the mask value. The mask will act to stop * the fill when it is higher than the seed level. (This is * in contrast to conventional grayscale filling where the * seed always fills below the mask.) * (3) An example of use is a basin, described by the mask (pixm), * where within the basin, the seed pix (pixs) gets filled to the * height of the highest seed pixel that is above its * corresponding max pixel. Filling occurs while the * propagating seed pixels in pixs are larger than the * corresponding mask values in pixm. * (4) Reference paper : * L. Vincent, Morphological grayscale reconstruction in image * analysis: applications and efficient algorithms, IEEE Transactions * on Image Processing, vol. 2, no. 2, pp. 176-201, 1993. */ static void seedfillGrayInvLow(l_uint32 *datas, l_int32 w, l_int32 h, l_int32 wpls, l_uint32 *datam, l_int32 wplm, l_int32 connectivity) { l_uint8 val1, val2, val3, val4, val5, val6, val7, val8; l_uint8 val, maxval, maskval, boolval; l_int32 i, j, imax, jmax, queue_size; l_uint32 *lines, *linem; L_PIXEL *pixel; L_QUEUE *lq_pixel; PROCNAME("seedfillGrayInvLow"); if (connectivity != 4 && connectivity != 8) { L_ERROR("connectivity must be 4 or 8\n", procName); return; } imax = h - 1; jmax = w - 1; /* In the worst case, most of the pixels could be pushed * onto the FIFO queue during anti-raster scan. However this * will rarely happen, and we initialize the queue ptr size to * the image perimeter. */ lq_pixel = lqueueCreate(2 * (w + h)); switch (connectivity) { case 4: /* UL --> LR scan (Raster Order) * If I : mask image * J : marker image * Let p be the currect pixel; * tmp <- max{J(p) union J(p) neighbors in raster order} * if (tmp > I(p)) * J(p) <- tmp * end */ for (i = 0; i < h; i++) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = 0; j < w; j++) { if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { maxval = GET_DATA_BYTE(lines, j); if (i > 0) { val2 = GET_DATA_BYTE(lines - wpls, j); maxval = L_MAX(maxval, val2); } if (j > 0) { val4 = GET_DATA_BYTE(lines, j - 1); maxval = L_MAX(maxval, val4); } if (maxval > maskval) SET_DATA_BYTE(lines, j, maxval); } } } /* LR --> UL scan (anti-raster order) * If I : mask image * J : marker image * Let p be the currect pixel; * tmp <- max{J(p) union J(p) neighbors in anti-raster order} * if (tmp > I(p)) * J(p) <- tmp * end */ for (i = imax; i >= 0; i--) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = jmax; j >= 0; j--) { boolval = FALSE; if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { val = maxval = GET_DATA_BYTE(lines, j); if (i < imax) { val7 = GET_DATA_BYTE(lines + wpls, j); maxval = L_MAX(maxval, val7); } if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); maxval = L_MAX(maxval, val5); } if (maxval > maskval) SET_DATA_BYTE(lines, j, maxval); val = GET_DATA_BYTE(lines, j); /* * If there exists a point (q) which belongs to J(p) * neighbors in anti-raster order such that J(q) < J(p) * and J(p) > I(q) then * fifo_add(p) */ if (i < imax) { val7 = GET_DATA_BYTE(lines + wpls, j); if ((val7 < val) && (val > GET_DATA_BYTE(linem + wplm, j))) { boolval = TRUE; } } if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); if (!boolval && (val5 < val) && (val > GET_DATA_BYTE(linem, j + 1))) { boolval = TRUE; } } if (boolval) { pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i; pixel->y = j; lqueueAdd(lq_pixel, pixel); } } } } /* Propagation step: * while fifo_empty = false * p <- fifo_first() * for every pixel (q) belong to neighbors of (p) * if J(q) < J(p) and J(p) > I(q) * J(q) <- min(J(p), I(q)); * fifo_add(q); * end * end * end */ queue_size = lqueueGetCount(lq_pixel); while (queue_size) { pixel = (L_PIXEL *)lqueueRemove(lq_pixel); i = pixel->x; j = pixel->y; LEPT_FREE(pixel); lines = datas + i * wpls; linem = datam + i * wplm; if ((val = GET_DATA_BYTE(lines, j)) > 0) { if (i > 0) { val2 = GET_DATA_BYTE(lines - wpls, j); maskval = GET_DATA_BYTE(linem - wplm, j); if (val > val2 && val > maskval) { SET_DATA_BYTE(lines - wpls, j, val); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i - 1; pixel->y = j; lqueueAdd(lq_pixel, pixel); } } if (j > 0) { val4 = GET_DATA_BYTE(lines, j - 1); maskval = GET_DATA_BYTE(linem, j - 1); if (val > val4 && val > maskval) { SET_DATA_BYTE(lines, j - 1, val); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i; pixel->y = j - 1; lqueueAdd(lq_pixel, pixel); } } if (i < imax) { val7 = GET_DATA_BYTE(lines + wpls, j); maskval = GET_DATA_BYTE(linem + wplm, j); if (val > val7 && val > maskval) { SET_DATA_BYTE(lines + wpls, j, val); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i + 1; pixel->y = j; lqueueAdd(lq_pixel, pixel); } } if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); maskval = GET_DATA_BYTE(linem, j + 1); if (val > val5 && val > maskval) { SET_DATA_BYTE(lines, j + 1, val); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i; pixel->y = j + 1; lqueueAdd(lq_pixel, pixel); } } } queue_size = lqueueGetCount(lq_pixel); } break; case 8: /* UL --> LR scan (Raster Order) * If I : mask image * J : marker image * Let p be the currect pixel; * tmp <- max{J(p) union J(p) neighbors in raster order} * if (tmp > I(p)) * J(p) <- tmp * end */ for (i = 0; i < h; i++) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = 0; j < w; j++) { if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { maxval = GET_DATA_BYTE(lines, j); if (i > 0) { if (j > 0) { val1 = GET_DATA_BYTE(lines - wpls, j - 1); maxval = L_MAX(maxval, val1); } if (j < jmax) { val3 = GET_DATA_BYTE(lines - wpls, j + 1); maxval = L_MAX(maxval, val3); } val2 = GET_DATA_BYTE(lines - wpls, j); maxval = L_MAX(maxval, val2); } if (j > 0) { val4 = GET_DATA_BYTE(lines, j - 1); maxval = L_MAX(maxval, val4); } if (maxval > maskval) SET_DATA_BYTE(lines, j, maxval); } } } /* LR --> UL scan (anti-raster order) * If I : mask image * J : marker image * Let p be the currect pixel; * tmp <- max{J(p) union J(p) neighbors in anti-raster order} * if (tmp > I(p)) * J(p) <- tmp * end */ for (i = imax; i >= 0; i--) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = jmax; j >= 0; j--) { boolval = FALSE; if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { maxval = GET_DATA_BYTE(lines, j); if (i < imax) { if (j > 0) { val6 = GET_DATA_BYTE(lines + wpls, j - 1); maxval = L_MAX(maxval, val6); } if (j < jmax) { val8 = GET_DATA_BYTE(lines + wpls, j + 1); maxval = L_MAX(maxval, val8); } val7 = GET_DATA_BYTE(lines + wpls, j); maxval = L_MAX(maxval, val7); } if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); maxval = L_MAX(maxval, val5); } if (maxval > maskval) SET_DATA_BYTE(lines, j, maxval); val = GET_DATA_BYTE(lines, j); /* * If there exists a point (q) which belongs to J(p) * neighbors in anti-raster order such that J(q) < J(p) * and J(p) > I(q) then * fifo_add(p) */ if (i < imax) { if (j > 0) { val6 = GET_DATA_BYTE(lines + wpls, j - 1); if ((val6 < val) && (val > GET_DATA_BYTE(linem + wplm, j - 1))) { boolval = TRUE; } } if (j < jmax) { val8 = GET_DATA_BYTE(lines + wpls, j + 1); if (!boolval && (val8 < val) && (val > GET_DATA_BYTE(linem + wplm, j + 1))) { boolval = TRUE; } } val7 = GET_DATA_BYTE(lines + wpls, j); if (!boolval && (val7 < val) && (val > GET_DATA_BYTE(linem + wplm, j))) { boolval = TRUE; } } if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); if (!boolval && (val5 < val) && (val > GET_DATA_BYTE(linem, j + 1))) { boolval = TRUE; } } if (boolval) { pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i; pixel->y = j; lqueueAdd(lq_pixel, pixel); } } } } /* Propagation step: * while fifo_empty = false * p <- fifo_first() * for every pixel (q) belong to neighbors of (p) * if J(q) < J(p) and J(p) > I(q) * J(q) <- min(J(p), I(q)); * fifo_add(q); * end * end * end */ queue_size = lqueueGetCount(lq_pixel); while (queue_size) { pixel = (L_PIXEL *)lqueueRemove(lq_pixel); i = pixel->x; j = pixel->y; LEPT_FREE(pixel); lines = datas + i * wpls; linem = datam + i * wplm; if ((val = GET_DATA_BYTE(lines, j)) > 0) { if (i > 0) { if (j > 0) { val1 = GET_DATA_BYTE(lines - wpls, j - 1); maskval = GET_DATA_BYTE(linem - wplm, j - 1); if (val > val1 && val > maskval) { SET_DATA_BYTE(lines - wpls, j - 1, val); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i - 1; pixel->y = j - 1; lqueueAdd(lq_pixel, pixel); } } if (j < jmax) { val3 = GET_DATA_BYTE(lines - wpls, j + 1); maskval = GET_DATA_BYTE(linem - wplm, j + 1); if (val > val3 && val > maskval) { SET_DATA_BYTE(lines - wpls, j + 1, val); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i - 1; pixel->y = j + 1; lqueueAdd(lq_pixel, pixel); } } val2 = GET_DATA_BYTE(lines - wpls, j); maskval = GET_DATA_BYTE(linem - wplm, j); if (val > val2 && val > maskval) { SET_DATA_BYTE(lines - wpls, j, val); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i - 1; pixel->y = j; lqueueAdd(lq_pixel, pixel); } } if (j > 0) { val4 = GET_DATA_BYTE(lines, j - 1); maskval = GET_DATA_BYTE(linem, j - 1); if (val > val4 && val > maskval) { SET_DATA_BYTE(lines, j - 1, val); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i; pixel->y = j - 1; lqueueAdd(lq_pixel, pixel); } } if (i < imax) { if (j > 0) { val6 = GET_DATA_BYTE(lines + wpls, j - 1); maskval = GET_DATA_BYTE(linem + wplm, j - 1); if (val > val6 && val > maskval) { SET_DATA_BYTE(lines + wpls, j - 1, val); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i + 1; pixel->y = j - 1; lqueueAdd(lq_pixel, pixel); } } if (j < jmax) { val8 = GET_DATA_BYTE(lines + wpls, j + 1); maskval = GET_DATA_BYTE(linem + wplm, j + 1); if (val > val8 && val > maskval) { SET_DATA_BYTE(lines + wpls, j + 1, val); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i + 1; pixel->y = j + 1; lqueueAdd(lq_pixel, pixel); } } val7 = GET_DATA_BYTE(lines + wpls, j); maskval = GET_DATA_BYTE(linem + wplm, j); if (val > val7 && val > maskval) { SET_DATA_BYTE(lines + wpls, j, val); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i + 1; pixel->y = j; lqueueAdd(lq_pixel, pixel); } } if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); maskval = GET_DATA_BYTE(linem, j + 1); if (val > val5 && val > maskval) { SET_DATA_BYTE(lines, j + 1, val); pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); pixel->x = i; pixel->y = j + 1; lqueueAdd(lq_pixel, pixel); } } } queue_size = lqueueGetCount(lq_pixel); } break; default: L_ERROR("shouldn't get here!\n", procName); } lqueueDestroy(&lq_pixel, TRUE); } /*-----------------------------------------------------------------------* * Vincent's Iterative Grayscale Seedfill method * *-----------------------------------------------------------------------*/ /*! * \brief pixSeedfillGraySimple() * * \param[in] pixs 8 bpp seed; filled in place * \param[in] pixm 8 bpp filling mask * \param[in] connectivity 4 or 8 * \return 0 if OK, 1 on error * *
 * Notes:
 *      (1) This is an in-place filling operation on the seed, pixs,
 *          where the clipping mask is always above or at the level
 *          of the seed as it is filled.
 *      (2) For details of the operation, see the description in
 *          seedfillGrayLowSimple() and the code there.
 *      (3) As an example of use, see the description in pixHDome().
 *          There, the seed is an image where each pixel is a fixed
 *          amount smaller than the corresponding mask pixel.
 *      (4) Reference paper :
 *            L. Vincent, Morphological grayscale reconstruction in image
 *            analysis: applications and efficient algorithms, IEEE Transactions
 *            on  Image Processing, vol. 2, no. 2, pp. 176-201, 1993.
 * 
*/ l_ok pixSeedfillGraySimple(PIX *pixs, PIX *pixm, l_int32 connectivity) { l_int32 i, h, w, wpls, wplm, boolval; l_uint32 *datas, *datam; PIX *pixt; PROCNAME("pixSeedfillGraySimple"); if (!pixs || pixGetDepth(pixs) != 8) return ERROR_INT("pixs not defined or not 8 bpp", procName, 1); if (!pixm || pixGetDepth(pixm) != 8) return ERROR_INT("pixm not defined or not 8 bpp", procName, 1); if (connectivity != 4 && connectivity != 8) return ERROR_INT("connectivity not in {4,8}", procName, 1); /* Make sure the sizes of seed and mask images are the same */ if (pixSizesEqual(pixs, pixm) == 0) return ERROR_INT("pixs and pixm sizes differ", procName, 1); /* This is used to test for completion */ if ((pixt = pixCreateTemplate(pixs)) == NULL) return ERROR_INT("pixt not made", procName, 1); datas = pixGetData(pixs); datam = pixGetData(pixm); wpls = pixGetWpl(pixs); wplm = pixGetWpl(pixm); pixGetDimensions(pixs, &w, &h, NULL); for (i = 0; i < MaxIters; i++) { pixCopy(pixt, pixs); seedfillGrayLowSimple(datas, w, h, wpls, datam, wplm, connectivity); pixEqual(pixs, pixt, &boolval); if (boolval == 1) { #if DEBUG_PRINT_ITERS L_INFO("Gray seed fill converged: %d iters\n", procName, i + 1); #endif /* DEBUG_PRINT_ITERS */ break; } } pixDestroy(&pixt); return 0; } /*! * \brief pixSeedfillGrayInvSimple() * * \param[in] pixs 8 bpp seed; filled in place * \param[in] pixm 8 bpp filling mask * \param[in] connectivity 4 or 8 * \return 0 if OK, 1 on error * *
 * Notes:
 *      (1) This is an in-place filling operation on the seed, pixs,
 *          where the clipping mask is always below or at the level
 *          of the seed as it is filled.  Think of filling up a basin
 *          to a particular level, given by the maximum seed value
 *          in the basin.  Outside the filled region, the mask
 *          is above the filling level.
 *      (2) Contrast this with pixSeedfillGraySimple(), where the clipping mask
 *          is always above or at the level of the fill.  An example
 *          of its use is the hdome fill, where the seed is an image
 *          where each pixel is a fixed amount smaller than the
 *          corresponding mask pixel.
 * 
*/ l_ok pixSeedfillGrayInvSimple(PIX *pixs, PIX *pixm, l_int32 connectivity) { l_int32 i, h, w, wpls, wplm, boolval; l_uint32 *datas, *datam; PIX *pixt; PROCNAME("pixSeedfillGrayInvSimple"); if (!pixs || pixGetDepth(pixs) != 8) return ERROR_INT("pixs not defined or not 8 bpp", procName, 1); if (!pixm || pixGetDepth(pixm) != 8) return ERROR_INT("pixm not defined or not 8 bpp", procName, 1); if (connectivity != 4 && connectivity != 8) return ERROR_INT("connectivity not in {4,8}", procName, 1); /* Make sure the sizes of seed and mask images are the same */ if (pixSizesEqual(pixs, pixm) == 0) return ERROR_INT("pixs and pixm sizes differ", procName, 1); /* This is used to test for completion */ if ((pixt = pixCreateTemplate(pixs)) == NULL) return ERROR_INT("pixt not made", procName, 1); datas = pixGetData(pixs); datam = pixGetData(pixm); wpls = pixGetWpl(pixs); wplm = pixGetWpl(pixm); pixGetDimensions(pixs, &w, &h, NULL); for (i = 0; i < MaxIters; i++) { pixCopy(pixt, pixs); seedfillGrayInvLowSimple(datas, w, h, wpls, datam, wplm, connectivity); pixEqual(pixs, pixt, &boolval); if (boolval == 1) { #if DEBUG_PRINT_ITERS L_INFO("Gray seed fill converged: %d iters\n", procName, i + 1); #endif /* DEBUG_PRINT_ITERS */ break; } } pixDestroy(&pixt); return 0; } /*! * \brief seedfillGrayLowSimple() * * Notes: * (1) The pixels are numbered as follows: * 1 2 3 * 4 x 5 * 6 7 8 * This low-level filling operation consists of two scans, * raster and anti-raster, covering the entire seed image. * The caller typically iterates until the filling is * complete. * (2) The filling action can be visualized from the following example. * Suppose the mask, which clips the fill, is a sombrero-shaped * surface, where the highest point is 200 and the low pixels * around the rim are 30. Beyond the rim, the mask goes up a bit. * Suppose the seed, which is filled, consists of a single point * of height 150, located below the max of the mask, with * the rest 0. Then in the raster scan, nothing happens until * the high seed point is encountered, and then this value is * propagated right and down, until it hits the side of the * sombrero. The seed can never exceed the mask, so it fills * to the rim, going lower along the mask surface. When it * passes the rim, the seed continues to fill at the rim * height to the edge of the seed image. Then on the * anti-raster scan, the seed fills flat inside the * sombrero to the upper and left, and then out from the * rim as before. The final result has a seed that is * flat outside the rim, and inside it fills the sombrero * but only up to 150. If the rim height varies, the * filled seed outside the rim will be at the highest * point on the rim, which is a saddle point on the rim. */ static void seedfillGrayLowSimple(l_uint32 *datas, l_int32 w, l_int32 h, l_int32 wpls, l_uint32 *datam, l_int32 wplm, l_int32 connectivity) { l_uint8 val2, val3, val4, val5, val7, val8; l_uint8 val, maxval, maskval; l_int32 i, j, imax, jmax; l_uint32 *lines, *linem; PROCNAME("seedfillGrayLowSimple"); imax = h - 1; jmax = w - 1; switch (connectivity) { case 4: /* UL --> LR scan */ for (i = 0; i < h; i++) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = 0; j < w; j++) { if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { maxval = 0; if (i > 0) maxval = GET_DATA_BYTE(lines - wpls, j); if (j > 0) { val4 = GET_DATA_BYTE(lines, j - 1); maxval = L_MAX(maxval, val4); } val = GET_DATA_BYTE(lines, j); maxval = L_MAX(maxval, val); val = L_MIN(maxval, maskval); SET_DATA_BYTE(lines, j, val); } } } /* LR --> UL scan */ for (i = imax; i >= 0; i--) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = jmax; j >= 0; j--) { if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { maxval = 0; if (i < imax) maxval = GET_DATA_BYTE(lines + wpls, j); if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); maxval = L_MAX(maxval, val5); } val = GET_DATA_BYTE(lines, j); maxval = L_MAX(maxval, val); val = L_MIN(maxval, maskval); SET_DATA_BYTE(lines, j, val); } } } break; case 8: /* UL --> LR scan */ for (i = 0; i < h; i++) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = 0; j < w; j++) { if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { maxval = 0; if (i > 0) { if (j > 0) maxval = GET_DATA_BYTE(lines - wpls, j - 1); if (j < jmax) { val2 = GET_DATA_BYTE(lines - wpls, j + 1); maxval = L_MAX(maxval, val2); } val3 = GET_DATA_BYTE(lines - wpls, j); maxval = L_MAX(maxval, val3); } if (j > 0) { val4 = GET_DATA_BYTE(lines, j - 1); maxval = L_MAX(maxval, val4); } val = GET_DATA_BYTE(lines, j); maxval = L_MAX(maxval, val); val = L_MIN(maxval, maskval); SET_DATA_BYTE(lines, j, val); } } } /* LR --> UL scan */ for (i = imax; i >= 0; i--) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = jmax; j >= 0; j--) { if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { maxval = 0; if (i < imax) { if (j > 0) maxval = GET_DATA_BYTE(lines + wpls, j - 1); if (j < jmax) { val8 = GET_DATA_BYTE(lines + wpls, j + 1); maxval = L_MAX(maxval, val8); } val7 = GET_DATA_BYTE(lines + wpls, j); maxval = L_MAX(maxval, val7); } if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); maxval = L_MAX(maxval, val5); } val = GET_DATA_BYTE(lines, j); maxval = L_MAX(maxval, val); val = L_MIN(maxval, maskval); SET_DATA_BYTE(lines, j, val); } } } break; default: L_ERROR("connectivity must be 4 or 8\n", procName); } } /*! * \brief seedfillGrayInvLowSimple() * * Notes: * (1) The pixels are numbered as follows: * 1 2 3 * 4 x 5 * 6 7 8 * This low-level filling operation consists of two scans, * raster and anti-raster, covering the entire seed image. * The caller typically iterates until the filling is * complete. * (2) The "Inv" signifies the fact that in this case, filling * of the seed only takes place when the seed value is * greater than the mask value. The mask will act to stop * the fill when it is higher than the seed level. (This is * in contrast to conventional grayscale filling where the * seed always fills below the mask.) * (3) An example of use is a basin, described by the mask (pixm), * where within the basin, the seed pix (pixs) gets filled to the * height of the highest seed pixel that is above its * corresponding max pixel. Filling occurs while the * propagating seed pixels in pixs are larger than the * corresponding mask values in pixm. */ static void seedfillGrayInvLowSimple(l_uint32 *datas, l_int32 w, l_int32 h, l_int32 wpls, l_uint32 *datam, l_int32 wplm, l_int32 connectivity) { l_uint8 val1, val2, val3, val4, val5, val6, val7, val8; l_uint8 maxval, maskval; l_int32 i, j, imax, jmax; l_uint32 *lines, *linem; PROCNAME("seedfillGrayInvLowSimple"); imax = h - 1; jmax = w - 1; switch (connectivity) { case 4: /* UL --> LR scan */ for (i = 0; i < h; i++) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = 0; j < w; j++) { if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { maxval = GET_DATA_BYTE(lines, j); if (i > 0) { val2 = GET_DATA_BYTE(lines - wpls, j); maxval = L_MAX(maxval, val2); } if (j > 0) { val4 = GET_DATA_BYTE(lines, j - 1); maxval = L_MAX(maxval, val4); } if (maxval > maskval) SET_DATA_BYTE(lines, j, maxval); } } } /* LR --> UL scan */ for (i = imax; i >= 0; i--) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = jmax; j >= 0; j--) { if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { maxval = GET_DATA_BYTE(lines, j); if (i < imax) { val7 = GET_DATA_BYTE(lines + wpls, j); maxval = L_MAX(maxval, val7); } if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); maxval = L_MAX(maxval, val5); } if (maxval > maskval) SET_DATA_BYTE(lines, j, maxval); } } } break; case 8: /* UL --> LR scan */ for (i = 0; i < h; i++) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = 0; j < w; j++) { if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { maxval = GET_DATA_BYTE(lines, j); if (i > 0) { if (j > 0) { val1 = GET_DATA_BYTE(lines - wpls, j - 1); maxval = L_MAX(maxval, val1); } if (j < jmax) { val2 = GET_DATA_BYTE(lines - wpls, j + 1); maxval = L_MAX(maxval, val2); } val3 = GET_DATA_BYTE(lines - wpls, j); maxval = L_MAX(maxval, val3); } if (j > 0) { val4 = GET_DATA_BYTE(lines, j - 1); maxval = L_MAX(maxval, val4); } if (maxval > maskval) SET_DATA_BYTE(lines, j, maxval); } } } /* LR --> UL scan */ for (i = imax; i >= 0; i--) { lines = datas + i * wpls; linem = datam + i * wplm; for (j = jmax; j >= 0; j--) { if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { maxval = GET_DATA_BYTE(lines, j); if (i < imax) { if (j > 0) { val6 = GET_DATA_BYTE(lines + wpls, j - 1); maxval = L_MAX(maxval, val6); } if (j < jmax) { val8 = GET_DATA_BYTE(lines + wpls, j + 1); maxval = L_MAX(maxval, val8); } val7 = GET_DATA_BYTE(lines + wpls, j); maxval = L_MAX(maxval, val7); } if (j < jmax) { val5 = GET_DATA_BYTE(lines, j + 1); maxval = L_MAX(maxval, val5); } if (maxval > maskval) SET_DATA_BYTE(lines, j, maxval); } } } break; default: L_ERROR("connectivity must be 4 or 8\n", procName); } } /*-----------------------------------------------------------------------* * Gray seedfill variations * *-----------------------------------------------------------------------*/ /*! * \brief pixSeedfillGrayBasin() * * \param[in] pixb binary mask giving seed locations * \param[in] pixm 8 bpp basin-type filling mask * \param[in] delta amount of seed value above mask * \param[in] connectivity 4 or 8 * \return pixd filled seed if OK, NULL on error * *
 * Notes:
 *      (1) This fills from a seed within basins defined by a filling mask.
 *          The seed value(s) are greater than the corresponding
 *          filling mask value, and the result has the bottoms of
 *          the basins raised by the initial seed value.
 *      (2) The seed has value 255 except where pixb has fg (1), which
 *          are the seed 'locations'.  At the seed locations, the seed
 *          value is the corresponding value of the mask pixel in pixm
 *          plus %delta.  If %delta == 0, we return a copy of pixm.
 *      (3) The actual filling is done using the standard grayscale filling
 *          operation on the inverse of the mask and using the inverse
 *          of the seed image.  After filling, we return the inverse of
 *          the filled seed.
 *      (4) As an example of use: pixm can describe a grayscale image
 *          of text, where the (dark) text pixels are basins of
 *          low values; pixb can identify the local minima in pixm (say, at
 *          the bottom of the basins); and delta is the amount that we wish
 *          to raise (lighten) the basins.  We construct the seed
 *          (a.k.a marker) image from pixb, pixm and %delta.
 * 
*/ PIX * pixSeedfillGrayBasin(PIX *pixb, PIX *pixm, l_int32 delta, l_int32 connectivity) { PIX *pixbi, *pixmi, *pixsd; PROCNAME("pixSeedfillGrayBasin"); if (!pixb || pixGetDepth(pixb) != 1) return (PIX *)ERROR_PTR("pixb undefined or not 1 bpp", procName, NULL); if (!pixm || pixGetDepth(pixm) != 8) return (PIX *)ERROR_PTR("pixm undefined or not 8 bpp", procName, NULL); if (connectivity != 4 && connectivity != 8) return (PIX *)ERROR_PTR("connectivity not in {4,8}", procName, NULL); if (delta <= 0) { L_WARNING("delta <= 0; returning a copy of pixm\n", procName); return pixCopy(NULL, pixm); } /* Add delta to every pixel in pixm */ pixsd = pixCopy(NULL, pixm); pixAddConstantGray(pixsd, delta); /* Prepare the seed. Write 255 in all pixels of * ([pixm] + delta) where pixb is 0. */ pixbi = pixInvert(NULL, pixb); pixSetMasked(pixsd, pixbi, 255); /* Fill the inverse seed, using the inverse clipping mask */ pixmi = pixInvert(NULL, pixm); pixInvert(pixsd, pixsd); pixSeedfillGray(pixsd, pixmi, connectivity); /* Re-invert the filled seed */ pixInvert(pixsd, pixsd); pixDestroy(&pixbi); pixDestroy(&pixmi); return pixsd; } /*-----------------------------------------------------------------------* * Vincent's Distance Function method * *-----------------------------------------------------------------------*/ /*! * \brief pixDistanceFunction() * * \param[in] pixs 1 bpp * \param[in] connectivity 4 or 8 * \param[in] outdepth 8 or 16 bits for pixd * \param[in] boundcond L_BOUNDARY_BG, L_BOUNDARY_FG * \return pixd, or NULL on error * *
 * Notes:
 *      (1) This computes the distance of each pixel from the nearest
 *          background pixel.  All bg pixels therefore have a distance of 0,
 *          and the fg pixel distances increase linearly from 1 at the
 *          boundary.  It can also be used to compute the distance of
 *          each pixel from the nearest fg pixel, by inverting the input
 *          image before calling this function.  Then all fg pixels have
 *          a distance 0 and the bg pixel distances increase linearly
 *          from 1 at the boundary.
 *      (2) The algorithm, described in Leptonica on the page on seed
 *          filling and connected components, is due to Luc Vincent.
 *          In brief, we generate an 8 or 16 bpp image, initialized
 *          with the fg pixels of the input pix set to 1 and the
 *          1-boundary pixels (i.e., the boundary pixels of width 1 on
 *          the four sides set as either:
 *            * L_BOUNDARY_BG: 0
 *            * L_BOUNDARY_FG:  max
 *          where max = 0xff for 8 bpp and 0xffff for 16 bpp.
 *          Then do raster/anti-raster sweeps over all pixels interior
 *          to the 1-boundary, where the value of each new pixel is
 *          taken to be 1 more than the minimum of the previously-seen
 *          connected pixels (using either 4 or 8 connectivity).
 *          Finally, set the 1-boundary pixels using the mirrored method;
 *          this removes the max values there.
 *      (3) Using L_BOUNDARY_BG clamps the distance to 0 at the
 *          boundary.  Using L_BOUNDARY_FG allows the distance
 *          at the image boundary to "float".
 *      (4) For 4-connected, one could initialize only the left and top
 *          1-boundary pixels, and go all the way to the right
 *          and bottom; then coming back reset left and top.  But we
 *          instead use a method that works for both 4- and 8-connected.
 * 
*/ PIX * pixDistanceFunction(PIX *pixs, l_int32 connectivity, l_int32 outdepth, l_int32 boundcond) { l_int32 w, h, wpld; l_uint32 *datad; PIX *pixd; PROCNAME("pixDistanceFunction"); if (!pixs || pixGetDepth(pixs) != 1) return (PIX *)ERROR_PTR("!pixs or pixs not 1 bpp", procName, NULL); if (connectivity != 4 && connectivity != 8) return (PIX *)ERROR_PTR("connectivity not 4 or 8", procName, NULL); if (outdepth != 8 && outdepth != 16) return (PIX *)ERROR_PTR("outdepth not 8 or 16 bpp", procName, NULL); if (boundcond != L_BOUNDARY_BG && boundcond != L_BOUNDARY_FG) return (PIX *)ERROR_PTR("invalid boundcond", procName, NULL); pixGetDimensions(pixs, &w, &h, NULL); if ((pixd = pixCreate(w, h, outdepth)) == NULL) return (PIX *)ERROR_PTR("pixd not made", procName, NULL); datad = pixGetData(pixd); wpld = pixGetWpl(pixd); /* Initialize the fg pixels to 1 and the bg pixels to 0 */ pixSetMasked(pixd, pixs, 1); if (boundcond == L_BOUNDARY_BG) { distanceFunctionLow(datad, w, h, outdepth, wpld, connectivity); } else { /* L_BOUNDARY_FG: set boundary pixels to max val */ pixRasterop(pixd, 0, 0, w, 1, PIX_SET, NULL, 0, 0); /* top */ pixRasterop(pixd, 0, h - 1, w, 1, PIX_SET, NULL, 0, 0); /* bot */ pixRasterop(pixd, 0, 0, 1, h, PIX_SET, NULL, 0, 0); /* left */ pixRasterop(pixd, w - 1, 0, 1, h, PIX_SET, NULL, 0, 0); /* right */ distanceFunctionLow(datad, w, h, outdepth, wpld, connectivity); /* Set each boundary pixel equal to the pixel next to it */ pixSetMirroredBorder(pixd, 1, 1, 1, 1); } return pixd; } /*! * \brief distanceFunctionLow() */ static void distanceFunctionLow(l_uint32 *datad, l_int32 w, l_int32 h, l_int32 d, l_int32 wpld, l_int32 connectivity) { l_int32 val1, val2, val3, val4, val5, val6, val7, val8, minval, val; l_int32 i, j, imax, jmax; l_uint32 *lined; PROCNAME("distanceFunctionLow"); /* One raster scan followed by one anti-raster scan. * This does not re-set the 1-boundary of pixels that * were initialized to either 0 or maxval. */ imax = h - 1; jmax = w - 1; switch (connectivity) { case 4: if (d == 8) { /* UL --> LR scan */ for (i = 1; i < imax; i++) { lined = datad + i * wpld; for (j = 1; j < jmax; j++) { if ((val = GET_DATA_BYTE(lined, j)) > 0) { val2 = GET_DATA_BYTE(lined - wpld, j); val4 = GET_DATA_BYTE(lined, j - 1); minval = L_MIN(val2, val4); minval = L_MIN(minval, 254); SET_DATA_BYTE(lined, j, minval + 1); } } } /* LR --> UL scan */ for (i = imax - 1; i > 0; i--) { lined = datad + i * wpld; for (j = jmax - 1; j > 0; j--) { if ((val = GET_DATA_BYTE(lined, j)) > 0) { val7 = GET_DATA_BYTE(lined + wpld, j); val5 = GET_DATA_BYTE(lined, j + 1); minval = L_MIN(val5, val7); minval = L_MIN(minval + 1, val); SET_DATA_BYTE(lined, j, minval); } } } } else { /* d == 16 */ /* UL --> LR scan */ for (i = 1; i < imax; i++) { lined = datad + i * wpld; for (j = 1; j < jmax; j++) { if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { val2 = GET_DATA_TWO_BYTES(lined - wpld, j); val4 = GET_DATA_TWO_BYTES(lined, j - 1); minval = L_MIN(val2, val4); minval = L_MIN(minval, 0xfffe); SET_DATA_TWO_BYTES(lined, j, minval + 1); } } } /* LR --> UL scan */ for (i = imax - 1; i > 0; i--) { lined = datad + i * wpld; for (j = jmax - 1; j > 0; j--) { if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { val7 = GET_DATA_TWO_BYTES(lined + wpld, j); val5 = GET_DATA_TWO_BYTES(lined, j + 1); minval = L_MIN(val5, val7); minval = L_MIN(minval + 1, val); SET_DATA_TWO_BYTES(lined, j, minval); } } } } break; case 8: if (d == 8) { /* UL --> LR scan */ for (i = 1; i < imax; i++) { lined = datad + i * wpld; for (j = 1; j < jmax; j++) { if ((val = GET_DATA_BYTE(lined, j)) > 0) { val1 = GET_DATA_BYTE(lined - wpld, j - 1); val2 = GET_DATA_BYTE(lined - wpld, j); val3 = GET_DATA_BYTE(lined - wpld, j + 1); val4 = GET_DATA_BYTE(lined, j - 1); minval = L_MIN(val1, val2); minval = L_MIN(minval, val3); minval = L_MIN(minval, val4); minval = L_MIN(minval, 254); SET_DATA_BYTE(lined, j, minval + 1); } } } /* LR --> UL scan */ for (i = imax - 1; i > 0; i--) { lined = datad + i * wpld; for (j = jmax - 1; j > 0; j--) { if ((val = GET_DATA_BYTE(lined, j)) > 0) { val8 = GET_DATA_BYTE(lined + wpld, j + 1); val7 = GET_DATA_BYTE(lined + wpld, j); val6 = GET_DATA_BYTE(lined + wpld, j - 1); val5 = GET_DATA_BYTE(lined, j + 1); minval = L_MIN(val8, val7); minval = L_MIN(minval, val6); minval = L_MIN(minval, val5); minval = L_MIN(minval + 1, val); SET_DATA_BYTE(lined, j, minval); } } } } else { /* d == 16 */ /* UL --> LR scan */ for (i = 1; i < imax; i++) { lined = datad + i * wpld; for (j = 1; j < jmax; j++) { if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { val1 = GET_DATA_TWO_BYTES(lined - wpld, j - 1); val2 = GET_DATA_TWO_BYTES(lined - wpld, j); val3 = GET_DATA_TWO_BYTES(lined - wpld, j + 1); val4 = GET_DATA_TWO_BYTES(lined, j - 1); minval = L_MIN(val1, val2); minval = L_MIN(minval, val3); minval = L_MIN(minval, val4); minval = L_MIN(minval, 0xfffe); SET_DATA_TWO_BYTES(lined, j, minval + 1); } } } /* LR --> UL scan */ for (i = imax - 1; i > 0; i--) { lined = datad + i * wpld; for (j = jmax - 1; j > 0; j--) { if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { val8 = GET_DATA_TWO_BYTES(lined + wpld, j + 1); val7 = GET_DATA_TWO_BYTES(lined + wpld, j); val6 = GET_DATA_TWO_BYTES(lined + wpld, j - 1); val5 = GET_DATA_TWO_BYTES(lined, j + 1); minval = L_MIN(val8, val7); minval = L_MIN(minval, val6); minval = L_MIN(minval, val5); minval = L_MIN(minval + 1, val); SET_DATA_TWO_BYTES(lined, j, minval); } } } } break; default: L_ERROR("connectivity must be 4 or 8\n", procName); } } /*-----------------------------------------------------------------------* * Seed spread (based on distance function) * *-----------------------------------------------------------------------*/ /*! * \brief pixSeedspread() * * \param[in] pixs 8 bpp * \param[in] connectivity 4 or 8 * \return pixd, or NULL on error * *
 * Notes:
 *      (1) The raster/anti-raster method for implementing this filling
 *          operation was suggested by Ray Smith.
 *      (2) This takes an arbitrary set of nonzero pixels in pixs, which
 *          can be sparse, and spreads (extrapolates) the values to
 *          fill all the pixels in pixd with the nonzero value it is
 *          closest to in pixs.  This is similar (though not completely
 *          equivalent) to doing a Voronoi tiling of the image, with a
 *          tile surrounding each pixel that has a nonzero value.
 *          All pixels within a tile are then closer to its "central"
 *          pixel than to any others.  Then assign the value of the
 *          "central" pixel to each pixel in the tile.
 *      (3) This is implemented by computing a distance function in parallel
 *          with the fill.  The distance function uses free boundary
 *          conditions (assumed maxval outside), and it controls the
 *          propagation of the pixels in pixd away from the nonzero
 *          (seed) values.  This is done in 2 traversals (raster/antiraster).
 *          In the raster direction, whenever the distance function
 *          is nonzero, the spread pixel takes on the value of its
 *          predecessor that has the minimum distance value.  In the
 *          antiraster direction, whenever the distance function is nonzero
 *          and its value is replaced by a smaller value, the spread
 *          pixel takes the value of the predecessor with the minimum
 *          distance value.
 *      (4) At boundaries where a pixel is equidistant from two
 *          nearest nonzero (seed) pixels, the decision of which value
 *          to use is arbitrary (greedy in search for minimum distance).
 *          This can give rise to strange-looking results, particularly
 *          for 4-connectivity where the L1 distance is computed from
 *          steps in N,S,E and W directions (no diagonals).
 * 
*/ PIX * pixSeedspread(PIX *pixs, l_int32 connectivity) { l_int32 w, h, wplt, wplg; l_uint32 *datat, *datag; PIX *pixm, *pixt, *pixg, *pixd; PROCNAME("pixSeedspread"); if (!pixs || pixGetDepth(pixs) != 8) return (PIX *)ERROR_PTR("!pixs or pixs not 8 bpp", procName, NULL); if (connectivity != 4 && connectivity != 8) return (PIX *)ERROR_PTR("connectivity not 4 or 8", procName, NULL); /* Add a 4 byte border to pixs. This simplifies the computation. */ pixg = pixAddBorder(pixs, 4, 0); pixGetDimensions(pixg, &w, &h, NULL); /* Initialize distance function pixt. Threshold pixs to get * a 0 at the seed points where the pixs pixel is nonzero, and * a 1 at all points that need to be filled. Use this as a * mask to set a 1 in pixt at all non-seed points. Also, set all * pixt pixels in an interior boundary of width 1 to the * maximum value. For debugging, to view the distance function, * use pixConvert16To8(pixt, L_LS_BYTE) on small images. */ pixm = pixThresholdToBinary(pixg, 1); pixt = pixCreate(w, h, 16); pixSetMasked(pixt, pixm, 1); pixRasterop(pixt, 0, 0, w, 1, PIX_SET, NULL, 0, 0); /* top */ pixRasterop(pixt, 0, h - 1, w, 1, PIX_SET, NULL, 0, 0); /* bot */ pixRasterop(pixt, 0, 0, 1, h, PIX_SET, NULL, 0, 0); /* left */ pixRasterop(pixt, w - 1, 0, 1, h, PIX_SET, NULL, 0, 0); /* right */ datat = pixGetData(pixt); wplt = pixGetWpl(pixt); /* Do the interpolation and remove the border. */ datag = pixGetData(pixg); wplg = pixGetWpl(pixg); seedspreadLow(datag, w, h, wplg, datat, wplt, connectivity); pixd = pixRemoveBorder(pixg, 4); pixDestroy(&pixm); pixDestroy(&pixg); pixDestroy(&pixt); return pixd; } /*! * \brief seedspreadLow() * * See pixSeedspread() for a brief description of the algorithm here. */ static void seedspreadLow(l_uint32 *datad, l_int32 w, l_int32 h, l_int32 wpld, l_uint32 *datat, l_int32 wplt, l_int32 connectivity) { l_int32 val1t, val2t, val3t, val4t, val5t, val6t, val7t, val8t; l_int32 i, j, imax, jmax, minval, valt, vald; l_uint32 *linet, *lined; PROCNAME("seedspreadLow"); /* One raster scan followed by one anti-raster scan. * pixt is initialized to have 0 on pixels where the * input is specified in pixd, and to have 1 on all * other pixels. We only change pixels in pixt and pixd * that are non-zero in pixt. */ imax = h - 1; jmax = w - 1; switch (connectivity) { case 4: /* UL --> LR scan */ for (i = 1; i < h; i++) { linet = datat + i * wplt; lined = datad + i * wpld; for (j = 1; j < jmax; j++) { if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { val2t = GET_DATA_TWO_BYTES(linet - wplt, j); val4t = GET_DATA_TWO_BYTES(linet, j - 1); minval = L_MIN(val2t, val4t); minval = L_MIN(minval, 0xfffe); SET_DATA_TWO_BYTES(linet, j, minval + 1); if (val2t < val4t) vald = GET_DATA_BYTE(lined - wpld, j); else vald = GET_DATA_BYTE(lined, j - 1); SET_DATA_BYTE(lined, j, vald); } } } /* LR --> UL scan */ for (i = imax - 1; i > 0; i--) { linet = datat + i * wplt; lined = datad + i * wpld; for (j = jmax - 1; j > 0; j--) { if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { val7t = GET_DATA_TWO_BYTES(linet + wplt, j); val5t = GET_DATA_TWO_BYTES(linet, j + 1); minval = L_MIN(val5t, val7t); minval = L_MIN(minval + 1, valt); if (valt > minval) { /* replace */ SET_DATA_TWO_BYTES(linet, j, minval); if (val5t < val7t) vald = GET_DATA_BYTE(lined, j + 1); else vald = GET_DATA_BYTE(lined + wplt, j); SET_DATA_BYTE(lined, j, vald); } } } } break; case 8: /* UL --> LR scan */ for (i = 1; i < h; i++) { linet = datat + i * wplt; lined = datad + i * wpld; for (j = 1; j < jmax; j++) { if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { val1t = GET_DATA_TWO_BYTES(linet - wplt, j - 1); val2t = GET_DATA_TWO_BYTES(linet - wplt, j); val3t = GET_DATA_TWO_BYTES(linet - wplt, j + 1); val4t = GET_DATA_TWO_BYTES(linet, j - 1); minval = L_MIN(val1t, val2t); minval = L_MIN(minval, val3t); minval = L_MIN(minval, val4t); minval = L_MIN(minval, 0xfffe); SET_DATA_TWO_BYTES(linet, j, minval + 1); if (minval == val1t) vald = GET_DATA_BYTE(lined - wpld, j - 1); else if (minval == val2t) vald = GET_DATA_BYTE(lined - wpld, j); else if (minval == val3t) vald = GET_DATA_BYTE(lined - wpld, j + 1); else /* minval == val4t */ vald = GET_DATA_BYTE(lined, j - 1); SET_DATA_BYTE(lined, j, vald); } } } /* LR --> UL scan */ for (i = imax - 1; i > 0; i--) { linet = datat + i * wplt; lined = datad + i * wpld; for (j = jmax - 1; j > 0; j--) { if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { val8t = GET_DATA_TWO_BYTES(linet + wplt, j + 1); val7t = GET_DATA_TWO_BYTES(linet + wplt, j); val6t = GET_DATA_TWO_BYTES(linet + wplt, j - 1); val5t = GET_DATA_TWO_BYTES(linet, j + 1); minval = L_MIN(val8t, val7t); minval = L_MIN(minval, val6t); minval = L_MIN(minval, val5t); minval = L_MIN(minval + 1, valt); if (valt > minval) { /* replace */ SET_DATA_TWO_BYTES(linet, j, minval); if (minval == val5t + 1) vald = GET_DATA_BYTE(lined, j + 1); else if (minval == val6t + 1) vald = GET_DATA_BYTE(lined + wpld, j - 1); else if (minval == val7t + 1) vald = GET_DATA_BYTE(lined + wpld, j); else /* minval == val8t + 1 */ vald = GET_DATA_BYTE(lined + wpld, j + 1); SET_DATA_BYTE(lined, j, vald); } } } } break; default: L_ERROR("connectivity must be 4 or 8\n", procName); break; } } /*-----------------------------------------------------------------------* * Local extrema * *-----------------------------------------------------------------------*/ /*! * \brief pixLocalExtrema() * * \param[in] pixs 8 bpp * \param[in] maxmin max allowed for the min in a 3x3 neighborhood; * use 0 for default which is to have no upper bound * \param[in] minmax min allowed for the max in a 3x3 neighborhood; * use 0 for default which is to have no lower bound * \param[out] ppixmin [optional] mask of local minima * \param[out] ppixmax [optional] mask of local maxima * \return 0 if OK, 1 on error * *
 * Notes:
 *      (1) This gives the actual local minima and maxima.
 *          A local minimum is a pixel whose surrounding pixels all
 *          have values at least as large, and likewise for a local
 *          maximum.  For the local minima, %maxmin is the upper
 *          bound for the value of pixs.  Likewise, for the local maxima,
 *          %minmax is the lower bound for the value of pixs.
 *      (2) The minima are found by starting with the erosion-and-equality
 *          approach of pixSelectedLocalExtrema().  This is followed
 *          by a qualification step, where each c.c. in the resulting
 *          minimum mask is extracted, the pixels bordering it are
 *          located, and they are queried.  If all of those pixels
 *          are larger than the value of that minimum, it is a true
 *          minimum and its c.c. is saved; otherwise the c.c. is
 *          rejected.  Note that if a bordering pixel has the
 *          same value as the minimum, it must then have a
 *          neighbor that is smaller, so the component is not a
 *          true minimum.
 *      (3) The maxima are found by inverting the image and looking
 *          for the minima there.
 *      (4) The generated masks can be used as markers for
 *          further operations.
 * 
*/ l_ok pixLocalExtrema(PIX *pixs, l_int32 maxmin, l_int32 minmax, PIX **ppixmin, PIX **ppixmax) { PIX *pixmin, *pixmax, *pixt1, *pixt2; PROCNAME("pixLocalExtrema"); if (!pixs || pixGetDepth(pixs) != 8) return ERROR_INT("pixs not defined or not 8 bpp", procName, 1); if (!ppixmin && !ppixmax) return ERROR_INT("neither &pixmin, &pixmax are defined", procName, 1); if (maxmin <= 0) maxmin = 254; if (minmax <= 0) minmax = 1; if (ppixmin) { pixt1 = pixErodeGray(pixs, 3, 3); pixmin = pixFindEqualValues(pixs, pixt1); pixDestroy(&pixt1); pixQualifyLocalMinima(pixs, pixmin, maxmin); *ppixmin = pixmin; } if (ppixmax) { pixt1 = pixInvert(NULL, pixs); pixt2 = pixErodeGray(pixt1, 3, 3); pixmax = pixFindEqualValues(pixt1, pixt2); pixDestroy(&pixt2); pixQualifyLocalMinima(pixt1, pixmax, 255 - minmax); *ppixmax = pixmax; pixDestroy(&pixt1); } return 0; } /*! * \brief pixQualifyLocalMinima() * * \param[in] pixs 8 bpp image from which pixm has been extracted * \param[in] pixm 1 bpp mask of values equal to min in 3x3 neighborhood * \param[in] maxval max allowed for the min in a 3x3 neighborhood; * use 0 for default which is to have no upper bound * \return 0 if OK, 1 on error * *
 * Notes:
 *      (1) This function acts in-place to remove all c.c. in pixm
 *          that are not true local minima in pixs.  As seen in
 *          pixLocalExtrema(), the input pixm are found by selecting those
 *          pixels of pixs whose values do not change with a 3x3
 *          grayscale erosion.  Here, we require that for each c.c.
 *          in pixm, all pixels in pixs that correspond to the exterior
 *          boundary pixels of the c.c. have values that are greater
 *          than the value within the c.c.
 *      (2) The maximum allowed value for each local minimum can be
 *          bounded with %maxval.  Use 0 for default, which is to have
 *          no upper bound (equivalent to maxval == 254).
 * 
*/ static l_int32 pixQualifyLocalMinima(PIX *pixs, PIX *pixm, l_int32 maxval) { l_int32 n, i, j, k, x, y, w, h, xc, yc, wc, hc, xon, yon; l_int32 vals, wpls, wplc, ismin; l_uint32 val; l_uint32 *datas, *datac, *lines, *linec; BOXA *boxa; PIX *pix1, *pix2, *pix3; PIXA *pixa; PROCNAME("pixQualifyLocalMinima"); if (!pixs || pixGetDepth(pixs) != 8) return ERROR_INT("pixs not defined or not 8 bpp", procName, 1); if (!pixm || pixGetDepth(pixm) != 1) return ERROR_INT("pixm not defined or not 1 bpp", procName, 1); if (maxval <= 0) maxval = 254; pixGetDimensions(pixs, &w, &h, NULL); datas = pixGetData(pixs); wpls = pixGetWpl(pixs); boxa = pixConnComp(pixm, &pixa, 8); n = pixaGetCount(pixa); for (k = 0; k < n; k++) { boxaGetBoxGeometry(boxa, k, &xc, &yc, &wc, &hc); pix1 = pixaGetPix(pixa, k, L_COPY); pix2 = pixAddBorder(pix1, 1, 0); pix3 = pixDilateBrick(NULL, pix2, 3, 3); pixXor(pix3, pix3, pix2); /* exterior boundary pixels */ datac = pixGetData(pix3); wplc = pixGetWpl(pix3); nextOnPixelInRaster(pix1, 0, 0, &xon, &yon); pixGetPixel(pixs, xc + xon, yc + yon, &val); if (val > maxval) { /* too large; erase */ pixRasterop(pixm, xc, yc, wc, hc, PIX_XOR, pix1, 0, 0); pixDestroy(&pix1); pixDestroy(&pix2); pixDestroy(&pix3); continue; } ismin = TRUE; /* Check all values in pixs that correspond to the exterior * boundary pixels of the c.c. in pixm. Verify that the * value in the c.c. is always less. */ for (i = 0, y = yc - 1; i < hc + 2 && y >= 0 && y < h; i++, y++) { lines = datas + y * wpls; linec = datac + i * wplc; for (j = 0, x = xc - 1; j < wc + 2 && x >= 0 && x < w; j++, x++) { if (GET_DATA_BIT(linec, j)) { vals = GET_DATA_BYTE(lines, x); if (vals <= val) { /* not a minimum! */ ismin = FALSE; break; } } } if (!ismin) break; } if (!ismin) /* erase it */ pixRasterop(pixm, xc, yc, wc, hc, PIX_XOR, pix1, 0, 0); pixDestroy(&pix1); pixDestroy(&pix2); pixDestroy(&pix3); } boxaDestroy(&boxa); pixaDestroy(&pixa); return 0; } /*! * \brief pixSelectedLocalExtrema() * * \param[in] pixs 8 bpp * \param[in] mindist -1 for keeping all pixels; >= 0 specifies distance * \param[out] ppixmin mask of local minima * \param[out] ppixmax mask of local maxima * \return 0 if OK, 1 on error * *
 * Notes:
 *      (1) This selects those local 3x3 minima that are at least a
 *          specified distance from the nearest local 3x3 maxima, and v.v.
 *          for the selected set of local 3x3 maxima.
 *          The local 3x3 minima is the set of pixels whose value equals
 *          the value after a 3x3 brick erosion, and the local 3x3 maxima
 *          is the set of pixels whose value equals the value after
 *          a 3x3 brick dilation.
 *      (2) mindist is the minimum distance allowed between
 *          local 3x3 minima and local 3x3 maxima, in an 8-connected sense.
 *          mindist == 1 keeps all pixels found in step 1.
 *          mindist == 0 removes all pixels from each mask that are
 *          both a local 3x3 minimum and a local 3x3 maximum.
 *          mindist == 1 removes any local 3x3 minimum pixel that touches a
 *          local 3x3 maximum pixel, and likewise for the local maxima.
 *          To make the decision, visualize each local 3x3 minimum pixel
 *          as being surrounded by a square of size (2 * mindist + 1)
 *          on each side, such that no local 3x3 maximum pixel is within
 *          that square; and v.v.
 *      (3) The generated masks can be used as markers for further operations.
 * 
*/ l_ok pixSelectedLocalExtrema(PIX *pixs, l_int32 mindist, PIX **ppixmin, PIX **ppixmax) { PIX *pixmin, *pixmax, *pixt, *pixtmin, *pixtmax; PROCNAME("pixSelectedLocalExtrema"); if (!pixs || pixGetDepth(pixs) != 8) return ERROR_INT("pixs not defined or not 8 bpp", procName, 1); if (!ppixmin || !ppixmax) return ERROR_INT("&pixmin and &pixmax not both defined", procName, 1); pixt = pixErodeGray(pixs, 3, 3); pixmin = pixFindEqualValues(pixs, pixt); pixDestroy(&pixt); pixt = pixDilateGray(pixs, 3, 3); pixmax = pixFindEqualValues(pixs, pixt); pixDestroy(&pixt); /* Remove all points that are within the prescribed distance * from each other. */ if (mindist < 0) { /* remove no points */ *ppixmin = pixmin; *ppixmax = pixmax; } else if (mindist == 0) { /* remove points belonging to both sets */ pixt = pixAnd(NULL, pixmin, pixmax); *ppixmin = pixSubtract(pixmin, pixmin, pixt); *ppixmax = pixSubtract(pixmax, pixmax, pixt); pixDestroy(&pixt); } else { pixtmin = pixDilateBrick(NULL, pixmin, 2 * mindist + 1, 2 * mindist + 1); pixtmax = pixDilateBrick(NULL, pixmax, 2 * mindist + 1, 2 * mindist + 1); *ppixmin = pixSubtract(pixmin, pixmin, pixtmax); *ppixmax = pixSubtract(pixmax, pixmax, pixtmin); pixDestroy(&pixtmin); pixDestroy(&pixtmax); } return 0; } /*! * \brief pixFindEqualValues() * * \param[in] pixs1 8 bpp * \param[in] pixs2 8 bpp * \return pixd 1 bpp mask, or NULL on error * *
 * Notes:
 *      (1) The two images are aligned at the UL corner, and the returned
 *          image has ON pixels where the pixels in pixs1 and pixs2
 *          have equal values.
 * 
*/ PIX * pixFindEqualValues(PIX *pixs1, PIX *pixs2) { l_int32 w1, h1, w2, h2, w, h; l_int32 i, j, val1, val2, wpls1, wpls2, wpld; l_uint32 *datas1, *datas2, *datad, *lines1, *lines2, *lined; PIX *pixd; PROCNAME("pixFindEqualValues"); if (!pixs1 || pixGetDepth(pixs1) != 8) return (PIX *)ERROR_PTR("pixs1 undefined or not 8 bpp", procName, NULL); if (!pixs2 || pixGetDepth(pixs2) != 8) return (PIX *)ERROR_PTR("pixs2 undefined or not 8 bpp", procName, NULL); pixGetDimensions(pixs1, &w1, &h1, NULL); pixGetDimensions(pixs2, &w2, &h2, NULL); w = L_MIN(w1, w2); h = L_MIN(h1, h2); pixd = pixCreate(w, h, 1); datas1 = pixGetData(pixs1); datas2 = pixGetData(pixs2); datad = pixGetData(pixd); wpls1 = pixGetWpl(pixs1); wpls2 = pixGetWpl(pixs2); wpld = pixGetWpl(pixd); for (i = 0; i < h; i++) { lines1 = datas1 + i * wpls1; lines2 = datas2 + i * wpls2; lined = datad + i * wpld; for (j = 0; j < w; j++) { val1 = GET_DATA_BYTE(lines1, j); val2 = GET_DATA_BYTE(lines2, j); if (val1 == val2) SET_DATA_BIT(lined, j); } } return pixd; } /*-----------------------------------------------------------------------* * Selection of minima in mask connected components * *-----------------------------------------------------------------------*/ /*! * \brief pixSelectMinInConnComp() * * \param[in] pixs 8 bpp * \param[in] pixm 1 bpp * \param[out] ppta pta of min pixel locations * \param[out] pnav [optional] numa of minima values * \return 0 if OK, 1 on error. * *
 * Notes:
 *      (1) For each 8 connected component in pixm, this finds
 *          a pixel in pixs that has the lowest value, and saves
 *          it in a Pta.  If several pixels in pixs have the same
 *          minimum value, it picks the first one found.
 *      (2) For a mask pixm of true local minima, all pixels in each
 *          connected component have the same value in pixs, so it is
 *          fastest to select one of them using a special seedfill
 *          operation.  Not yet implemented.
 * 
*/ l_ok pixSelectMinInConnComp(PIX *pixs, PIX *pixm, PTA **ppta, NUMA **pnav) { l_int32 bx, by, bw, bh, i, j, c, n; l_int32 xs, ys, minx, miny, wpls, wplt, val, minval; l_uint32 *datas, *datat, *lines, *linet; BOXA *boxa; NUMA *nav; PIX *pixt, *pixs2, *pixm2; PIXA *pixa; PTA *pta; PROCNAME("pixSelectMinInConnComp"); if (!ppta) return ERROR_INT("&pta not defined", procName, 1); *ppta = NULL; if (pnav) *pnav = NULL; if (!pixs || pixGetDepth(pixs) != 8) return ERROR_INT("pixs undefined or not 8 bpp", procName, 1); if (!pixm || pixGetDepth(pixm) != 1) return ERROR_INT("pixm undefined or not 1 bpp", procName, 1); /* Crop to the min size if necessary */ if (pixCropToMatch(pixs, pixm, &pixs2, &pixm2)) { pixDestroy(&pixs2); pixDestroy(&pixm2); return ERROR_INT("cropping failure", procName, 1); } /* Find value and location of min value pixel in each component */ boxa = pixConnComp(pixm2, &pixa, 8); n = boxaGetCount(boxa); pta = ptaCreate(n); *ppta = pta; nav = numaCreate(n); datas = pixGetData(pixs2); wpls = pixGetWpl(pixs2); for (c = 0; c < n; c++) { pixt = pixaGetPix(pixa, c, L_CLONE); boxaGetBoxGeometry(boxa, c, &bx, &by, &bw, &bh); if (bw == 1 && bh == 1) { ptaAddPt(pta, bx, by); numaAddNumber(nav, GET_DATA_BYTE(datas + by * wpls, bx)); pixDestroy(&pixt); continue; } datat = pixGetData(pixt); wplt = pixGetWpl(pixt); minx = miny = 1000000; minval = 256; for (i = 0; i < bh; i++) { ys = by + i; lines = datas + ys * wpls; linet = datat + i * wplt; for (j = 0; j < bw; j++) { xs = bx + j; if (GET_DATA_BIT(linet, j)) { val = GET_DATA_BYTE(lines, xs); if (val < minval) { minval = val; minx = xs; miny = ys; } } } } ptaAddPt(pta, minx, miny); numaAddNumber(nav, GET_DATA_BYTE(datas + miny * wpls, minx)); pixDestroy(&pixt); } boxaDestroy(&boxa); pixaDestroy(&pixa); if (pnav) *pnav = nav; else numaDestroy(&nav); pixDestroy(&pixs2); pixDestroy(&pixm2); return 0; } /*-----------------------------------------------------------------------* * Removal of seeded connected components from a mask * *-----------------------------------------------------------------------*/ /*! * \brief pixRemoveSeededComponents() * * \param[in] pixd [optional]; can be null or equal to pixm; 1 bpp * \param[in] pixs 1 bpp seed * \param[in] pixm 1 bpp filling mask * \param[in] connectivity 4 or 8 * \param[in] bordersize amount of border clearing * \return pixd, or NULL on error * *
 * Notes:
 *      (1) This removes each component in pixm for which there is
 *          at least one seed in pixs.  If pixd == NULL, this returns
 *          the result in a new pixd.  Otherwise, it is an in-place
 *          operation on pixm.  In no situation is pixs altered,
 *          because we do the filling with a copy of pixs.
 *      (2) If bordersize > 0, it also clears all pixels within a
 *          distance %bordersize of the edge of pixd.  This is here
 *          because pixLocalExtrema() typically finds local minima
 *          at the border.  Use %bordersize >= 2 to remove these.
 * 
*/ PIX * pixRemoveSeededComponents(PIX *pixd, PIX *pixs, PIX *pixm, l_int32 connectivity, l_int32 bordersize) { PIX *pixt; PROCNAME("pixRemoveSeededComponents"); if (!pixs || pixGetDepth(pixs) != 1) return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", procName, pixd); if (!pixm || pixGetDepth(pixm) != 1) return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", procName, pixd); if (pixd && pixd != pixm) return (PIX *)ERROR_PTR("operation not inplace", procName, pixd); pixt = pixCopy(NULL, pixs); pixSeedfillBinary(pixt, pixt, pixm, connectivity); pixd = pixXor(pixd, pixm, pixt); if (bordersize > 0) pixSetOrClearBorder(pixd, bordersize, bordersize, bordersize, bordersize, PIX_CLR); pixDestroy(&pixt); return pixd; }