summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRobert Buchholz <rbu@gentoo.org>2008-06-10 20:41:31 +0000
committerRobert Buchholz <rbu@gentoo.org>2008-06-10 20:41:31 +0000
commit5d1b91e560a3a4b20feca43fcb7f6123580df50d (patch)
treee3685d0c084b4b5276481c5bd61c5c05ccfaacf1
parentBumping 2.6.18 patchset to Debian 2.6.18.dfsg.1-18etch6 (diff)
downloadxen-5d1b91e560a3a4b20feca43fcb7f6123580df50d.tar.gz
xen-5d1b91e560a3a4b20feca43fcb7f6123580df50d.tar.bz2
xen-5d1b91e560a3a4b20feca43fcb7f6123580df50d.zip
Add backported e1000 driver from kernel-xen-2.6-2.6.21.7-3.fc8
svn path=/patches/; revision=79
-rw-r--r--trunk/2.6.21/00000_README10
-rw-r--r--trunk/2.6.21/21350_linux-2.6-netdev-e1000e-01.patch18137
-rw-r--r--trunk/2.6.21/21351_linux-2.6-netdev-e1000e-02.patch4358
-rw-r--r--trunk/2.6.21/21352_linux-2.6-netdev-e1000e-03.patch95
-rw-r--r--trunk/2.6.21/21353_linux-2.6-netdev-e1000e-04.patch23
-rw-r--r--trunk/2.6.21/21354_linux-2.6-netdev-e1000e-05.patch146
-rw-r--r--trunk/2.6.21/21355_linux-2.6-netdev-e1000e-06.patch3777
-rw-r--r--trunk/2.6.21/21356_linux-2.6-netdev-e1000e-07.patch93
-rw-r--r--trunk/2.6.21/21357_linux-2.6-netdev-e1000e-08.patch24
-rw-r--r--trunk/2.6.21/21358_linux-2.6-netdev-e1000e-09.patch197
-rw-r--r--trunk/2.6.21/21359_linux-2.6-netdev-e1000e-10.patch46
-rw-r--r--trunk/2.6.21/21360_linux-2.6-netdev-e1000e-backport.patch97
12 files changed, 27003 insertions, 0 deletions
diff --git a/trunk/2.6.21/00000_README b/trunk/2.6.21/00000_README
index f8255d6..5c1fb72 100644
--- a/trunk/2.6.21/00000_README
+++ b/trunk/2.6.21/00000_README
@@ -28,6 +28,16 @@ Patches
20xxx-?
Various bug-fix patches from Redhat.
+21351_linux-2.6-netdev-e1000e-02.patch
+...
+21360_linux-2.6-netdev-e1000e-backport.patch
+ Add e1000e driver (bug #360691)
+ Fri Feb 15 2008 Mark McLoughlin <markmc@redhat.com>
+
+26000_linux-2.6-cve-2008-0600.patch
+ CVE-2008-0600 fix (bug #432517)
+ * Tue Feb 12 2008 Eduardo Habkost <ehabkost@redhat.com>
+
30037_amd64-zero-extend-32bit-ptrace-xen.patch
[SECURITY] Zero extend all registers after ptrace in 32-bit entry path
(Xen).
diff --git a/trunk/2.6.21/21350_linux-2.6-netdev-e1000e-01.patch b/trunk/2.6.21/21350_linux-2.6-netdev-e1000e-01.patch
new file mode 100644
index 0000000..3464638
--- /dev/null
+++ b/trunk/2.6.21/21350_linux-2.6-netdev-e1000e-01.patch
@@ -0,0 +1,18137 @@
+From: Auke Kok <auke-jan.h.kok@intel.com>
+Date: Mon, 6 Aug 2007 21:14:44 +0000 (-0700)
+Subject: e1000e: New pci-express e1000 driver (currently for ICH9 devices only)
+X-Git-Url: http://git.kernel.org/?p=linux%2Fkernel%2Fgit%2Fjgarzik%2Fnetdev-2.6.git;a=commitdiff_plain;h=5b663b9d5d5d56209c2ea0cf636c8aea172065b8
+
+e1000e: New pci-express e1000 driver (currently for ICH9 devices only)
+
+This driver implements support for the ICH9 on-board LAN ethernet
+device. The device is similar to ICH8.
+
+The driver encompasses code to support 82571/2/3, es2lan and ICH8
+devices as well, but those device IDs are disabled and will be
+"lifted" from the e1000 driver over one at a time once this driver
+receives some more live time.
+
+Changes to the last snapshot posted are exclusively in the internal
+hardware API organization. Many thanks to Jeff Garzik for jumping in
+and getting this organized with a keen eye on the future layout.
+
+Signed-off-by: Auke Kok <auke-jan.h.kok@intel.com>
+Signed-off-by: Jeff Garzik <jeff@garzik.org>
+---
+
+diff --git a/drivers/net/Kconfig b/drivers/net/Kconfig
+index 81ef81c..e5f2f02 100644
+--- a/drivers/net/Kconfig
++++ b/drivers/net/Kconfig
+@@ -2059,6 +2059,29 @@ config E1000_DISABLE_PACKET_SPLIT
+
+ If in doubt, say N.
+
++config E1000E
++ tristate "Intel(R) PRO/1000 PCI-Express Gigabit Ethernet support"
++ depends on PCI
++ ---help---
++ This driver supports the PCI-Express Intel(R) PRO/1000 gigabit
++ ethernet family of adapters. For PCI or PCI-X e1000 adapters,
++ use the regular e1000 driver For more information on how to
++ identify your adapter, go to the Adapter & Driver ID Guide at:
++
++ <http://support.intel.com/support/network/adapter/pro100/21397.htm>
++
++ For general information and support, go to the Intel support
++ website at:
++
++ <http://support.intel.com>
++
++ More specific information on configuring the driver is in
++ <file:Documentation/networking/e1000e.txt>.
++
++ To compile this driver as a module, choose M here and read
++ <file:Documentation/networking/net-modules.txt>. The module
++ will be called e1000e.
++
+ source "drivers/net/ixp2000/Kconfig"
+
+ config MYRI_SBUS
+diff --git a/drivers/net/Makefile b/drivers/net/Makefile
+index e684212..4140a0c 100644
+--- a/drivers/net/Makefile
++++ b/drivers/net/Makefile
+@@ -3,6 +3,7 @@
+ #
+
+ obj-$(CONFIG_E1000) += e1000/
++obj-$(CONFIG_E1000E) += e1000e/
+ obj-$(CONFIG_IBM_EMAC) += ibm_emac/
+ obj-$(CONFIG_IXGB) += ixgb/
+ obj-$(CONFIG_CHELSIO_T1) += chelsio/
+diff --git a/drivers/net/e1000e/82571.c b/drivers/net/e1000e/82571.c
+new file mode 100644
+index 0000000..a1b9d16
+--- /dev/null
++++ b/drivers/net/e1000e/82571.c
+@@ -0,0 +1,1382 @@
++/*******************************************************************************
++
++ Intel PRO/1000 Linux driver
++ Copyright(c) 1999 - 2007 Intel Corporation.
++
++ This program is free software; you can redistribute it and/or modify it
++ under the terms and conditions of the GNU General Public License,
++ version 2, as published by the Free Software Foundation.
++
++ This program is distributed in the hope it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
++ more details.
++
++ You should have received a copy of the GNU General Public License along with
++ this program; if not, write to the Free Software Foundation, Inc.,
++ 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++ The full GNU General Public License is included in this distribution in
++ the file called "COPYING".
++
++ Contact Information:
++ Linux NICS <linux.nics@intel.com>
++ e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
++ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++/*
++ * 82571EB Gigabit Ethernet Controller
++ * 82571EB Gigabit Ethernet Controller (Fiber)
++ * 82572EI Gigabit Ethernet Controller (Copper)
++ * 82572EI Gigabit Ethernet Controller (Fiber)
++ * 82572EI Gigabit Ethernet Controller
++ * 82573V Gigabit Ethernet Controller (Copper)
++ * 82573E Gigabit Ethernet Controller (Copper)
++ * 82573L Gigabit Ethernet Controller
++ */
++
++#include "e1000.h"
++
++#define ID_LED_RESERVED_F746 0xF746
++#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
++ (ID_LED_OFF1_ON2 << 8) | \
++ (ID_LED_DEF1_DEF2 << 4) | \
++ (ID_LED_DEF1_DEF2))
++
++#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
++
++static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
++static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
++static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
++static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
++static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
++ u16 words, u16 *data);
++static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
++static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
++static s32 e1000_setup_link_82571(struct e1000_hw *hw);
++static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
++
++/**
++ * e1000_init_phy_params_82571 - Init PHY func ptrs.
++ * @hw: pointer to the HW structure
++ *
++ * This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val = E1000_SUCCESS;
++
++ if (hw->media_type != e1000_media_type_copper) {
++ phy->type = e1000_phy_none;
++ goto out;
++ }
++
++ phy->addr = 1;
++ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
++ phy->reset_delay_us = 100;
++
++ switch (hw->mac.type) {
++ case e1000_82571:
++ case e1000_82572:
++ phy->type = e1000_phy_igp_2;
++ break;
++ case e1000_82573:
++ phy->type = e1000_phy_m88;
++ break;
++ default:
++ ret_val = -E1000_ERR_PHY;
++ goto out;
++ break;
++ }
++
++ /* This can only be done after all function pointers are setup. */
++ ret_val = e1000_get_phy_id_82571(hw);
++
++ /* Verify phy id */
++ switch (hw->mac.type) {
++ case e1000_82571:
++ case e1000_82572:
++ if (phy->id != IGP01E1000_I_PHY_ID) {
++ ret_val = -E1000_ERR_PHY;
++ goto out;
++ }
++ break;
++ case e1000_82573:
++ if (phy->id != M88E1111_I_PHY_ID) {
++ ret_val = -E1000_ERR_PHY;
++ goto out;
++ }
++ break;
++ default:
++ ret_val = -E1000_ERR_PHY;
++ goto out;
++ break;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_init_nvm_params_82571 - Init NVM func ptrs.
++ * @hw: pointer to the HW structure
++ *
++ * This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ u32 eecd = er32(EECD);
++ u16 size;
++
++ nvm->opcode_bits = 8;
++ nvm->delay_usec = 1;
++ switch (nvm->override) {
++ case e1000_nvm_override_spi_large:
++ nvm->page_size = 32;
++ nvm->address_bits = 16;
++ break;
++ case e1000_nvm_override_spi_small:
++ nvm->page_size = 8;
++ nvm->address_bits = 8;
++ break;
++ default:
++ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
++ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
++ break;
++ }
++
++ switch (hw->mac.type) {
++ case e1000_82573:
++ if (((eecd >> 15) & 0x3) == 0x3) {
++ nvm->type = e1000_nvm_flash_hw;
++ nvm->word_size = 2048;
++ /* Autonomous Flash update bit must be cleared due
++ * to Flash update issue.
++ */
++ eecd &= ~E1000_EECD_AUPDEN;
++ ew32(EECD, eecd);
++ break;
++ }
++ /* Fall Through */
++ default:
++ nvm->type = e1000_nvm_eeprom_spi;
++ size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
++ E1000_EECD_SIZE_EX_SHIFT);
++ /* Added to a constant, "size" becomes the left-shift value
++ * for setting word_size.
++ */
++ size += NVM_WORD_SIZE_BASE_SHIFT;
++ nvm->word_size = 1 << size;
++ break;
++ }
++
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_init_mac_params_82571 - Init MAC func ptrs.
++ * @hw: pointer to the HW structure
++ *
++ * This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ struct e1000_mac_info *mac = &hw->mac;
++ struct e1000_mac_operations *func = &mac->ops;
++ s32 ret_val = E1000_SUCCESS;
++
++ /* Set media type */
++ switch (adapter->pdev->device) {
++ case E1000_DEV_ID_82571EB_FIBER:
++ case E1000_DEV_ID_82572EI_FIBER:
++ case E1000_DEV_ID_82571EB_QUAD_FIBER:
++ hw->media_type = e1000_media_type_fiber;
++ break;
++ case E1000_DEV_ID_82571EB_SERDES:
++ case E1000_DEV_ID_82572EI_SERDES:
++ hw->media_type = e1000_media_type_internal_serdes;
++ break;
++ default:
++ hw->media_type = e1000_media_type_copper;
++ break;
++ }
++
++ /* Set mta register count */
++ mac->mta_reg_count = 128;
++ /* Set rar entry count */
++ mac->rar_entry_count = E1000_RAR_ENTRIES;
++ /* Set if manageability features are enabled. */
++ mac->arc_subsystem_valid =
++ (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
++
++ /* check for link */
++ switch (hw->media_type) {
++ case e1000_media_type_copper:
++ func->setup_physical_interface = e1000_setup_copper_link_82571;
++ func->check_for_link = e1000_check_for_copper_link;
++ func->get_link_up_info = e1000_get_speed_and_duplex_copper;
++ break;
++ case e1000_media_type_fiber:
++ func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
++ func->check_for_link = e1000_check_for_fiber_link;
++ func->get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes;
++ break;
++ case e1000_media_type_internal_serdes:
++ func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
++ func->check_for_link = e1000_check_for_serdes_link;
++ func->get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes;
++ break;
++ default:
++ ret_val = -E1000_ERR_CONFIG;
++ goto out;
++ break;
++ }
++
++out:
++ return ret_val;
++}
++
++static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ static int global_quad_port_a; /* global port a indication */
++ struct pci_dev *pdev = adapter->pdev;
++ u16 eeprom_data = 0;
++ int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
++ s32 rc;
++
++ rc = e1000_init_mac_params_82571(adapter);
++ if (rc)
++ return rc;
++
++ rc = e1000_init_nvm_params_82571(hw);
++ if (rc)
++ return rc;
++
++ rc = e1000_init_phy_params_82571(hw);
++ if (rc)
++ return rc;
++
++ /* tag quad port adapters first, it's used below */
++ switch (pdev->device) {
++ case E1000_DEV_ID_82571EB_QUAD_COPPER:
++ case E1000_DEV_ID_82571EB_QUAD_FIBER:
++ case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
++ adapter->flags |= FLAG_IS_QUAD_PORT;
++ /* mark the first port */
++ if (global_quad_port_a == 0)
++ adapter->flags |= FLAG_IS_QUAD_PORT_A;
++ /* Reset for multiple quad port adapters */
++ global_quad_port_a++;
++ if (global_quad_port_a == 4)
++ global_quad_port_a = 0;
++ break;
++ default:
++ break;
++ }
++
++ switch (adapter->hw.mac.type) {
++ case e1000_82571:
++ /* these dual ports don't have WoL on port B at all */
++ if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
++ (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
++ (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
++ (is_port_b))
++ adapter->flags &= ~FLAG_HAS_WOL;
++ /* quad ports only support WoL on port A */
++ if (adapter->flags & FLAG_IS_QUAD_PORT &&
++ (!adapter->flags & FLAG_IS_QUAD_PORT_A))
++ adapter->flags &= ~FLAG_HAS_WOL;
++ break;
++
++ case e1000_82573:
++ if (pdev->device == E1000_DEV_ID_82573L) {
++ e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
++ &eeprom_data);
++ if (eeprom_data & NVM_WORD1A_ASPM_MASK)
++ adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
++ }
++ break;
++ default:
++ break;
++ }
++
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
++ * @hw: pointer to the HW structure
++ *
++ * Reads the PHY registers and stores the PHY ID and possibly the PHY
++ * revision in the hardware structure.
++ **/
++static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val = E1000_SUCCESS;
++
++ switch (hw->mac.type) {
++ case e1000_82571:
++ case e1000_82572:
++ /* The 82571 firmware may still be configuring the PHY.
++ * In this case, we cannot access the PHY until the
++ * configuration is done. So we explicitly set the
++ * PHY ID. */
++ phy->id = IGP01E1000_I_PHY_ID;
++ break;
++ case e1000_82573:
++ ret_val = e1000_get_phy_id(hw);
++ break;
++ default:
++ ret_val = -E1000_ERR_PHY;
++ break;
++ }
++
++ return ret_val;
++}
++
++/**
++ * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
++ * @hw: pointer to the HW structure
++ *
++ * Acquire the HW semaphore to access the PHY or NVM
++ **/
++static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
++{
++ u32 swsm;
++ s32 ret_val = E1000_SUCCESS;
++ s32 timeout = hw->nvm.word_size + 1;
++ s32 i = 0;
++
++ /* Get the FW semaphore. */
++ for (i = 0; i < timeout; i++) {
++ swsm = er32(SWSM);
++ ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
++
++ /* Semaphore acquired if bit latched */
++ if (er32(SWSM) & E1000_SWSM_SWESMBI)
++ break;
++
++ udelay(50);
++ }
++
++ if (i == timeout) {
++ /* Release semaphores */
++ e1000_put_hw_semaphore(hw);
++ hw_dbg(hw, "Driver can't access the NVM\n");
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_put_hw_semaphore_82571 - Release hardware semaphore
++ * @hw: pointer to the HW structure
++ *
++ * Release hardware semaphore used to access the PHY or NVM
++ **/
++static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
++{
++ u32 swsm;
++
++ swsm = er32(SWSM);
++
++ swsm &= ~E1000_SWSM_SWESMBI;
++
++ ew32(SWSM, swsm);
++}
++
++/**
++ * e1000_acquire_nvm_82571 - Request for access to the EEPROM
++ * @hw: pointer to the HW structure
++ *
++ * To gain access to the EEPROM, first we must obtain a hardware semaphore.
++ * Then for non-82573 hardware, set the EEPROM access request bit and wait
++ * for EEPROM access grant bit. If the access grant bit is not set, release
++ * hardware semaphore.
++ **/
++static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
++{
++ s32 ret_val;
++
++ ret_val = e1000_get_hw_semaphore_82571(hw);
++ if (ret_val)
++ goto out;
++
++ if (hw->mac.type != e1000_82573)
++ ret_val = e1000_acquire_nvm(hw);
++
++ if (ret_val)
++ e1000_put_hw_semaphore_82571(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_release_nvm_82571 - Release exclusive access to EEPROM
++ * @hw: pointer to the HW structure
++ *
++ * Stop any current commands to the EEPROM and clear the EEPROM request bit.
++ **/
++static void e1000_release_nvm_82571(struct e1000_hw *hw)
++{
++ e1000_release_nvm(hw);
++ e1000_put_hw_semaphore_82571(hw);
++}
++
++/**
++ * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
++ * @hw: pointer to the HW structure
++ * @offset: offset within the EEPROM to be written to
++ * @words: number of words to write
++ * @data: 16 bit word(s) to be written to the EEPROM
++ *
++ * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
++ *
++ * If e1000_update_nvm_checksum is not called after this function, the
++ * EEPROM will most likley contain an invalid checksum.
++ **/
++static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
++ u16 *data)
++{
++ s32 ret_val = E1000_SUCCESS;
++
++ switch (hw->mac.type) {
++ case e1000_82573:
++ ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
++ break;
++ case e1000_82571:
++ case e1000_82572:
++ ret_val = e1000_write_nvm_spi(hw, offset, words, data);
++ break;
++ default:
++ ret_val = -E1000_ERR_NVM;
++ break;
++ }
++
++ return ret_val;
++}
++
++/**
++ * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
++ * @hw: pointer to the HW structure
++ *
++ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
++ * up to the checksum. Then calculates the EEPROM checksum and writes the
++ * value to the EEPROM.
++ **/
++static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
++{
++ u32 eecd;
++ s32 ret_val;
++ u16 i;
++
++ ret_val = e1000_update_nvm_checksum_generic(hw);
++ if (ret_val)
++ goto out;
++
++ /* If our nvm is an EEPROM, then we're done
++ * otherwise, commit the checksum to the flash NVM. */
++ if (hw->nvm.type != e1000_nvm_flash_hw)
++ goto out;
++
++ /* Check for pending operations. */
++ for (i = 0; i < E1000_FLASH_UPDATES; i++) {
++ msleep(1);
++ if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
++ break;
++ }
++
++ if (i == E1000_FLASH_UPDATES) {
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++ /* Reset the firmware if using STM opcode. */
++ if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
++ /* The enabling of and the actual reset must be done
++ * in two write cycles.
++ */
++ ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
++ e1e_flush();
++ ew32(HICR, E1000_HICR_FW_RESET);
++ }
++
++ /* Commit the write to flash */
++ eecd = er32(EECD) | E1000_EECD_FLUPD;
++ ew32(EECD, eecd);
++
++ for (i = 0; i < E1000_FLASH_UPDATES; i++) {
++ msleep(1);
++ if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
++ break;
++ }
++
++ if (i == E1000_FLASH_UPDATES) {
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
++ * @hw: pointer to the HW structure
++ *
++ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
++ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
++ **/
++static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
++{
++ if (hw->nvm.type == e1000_nvm_flash_hw)
++ e1000_fix_nvm_checksum_82571(hw);
++
++ return e1000_validate_nvm_checksum_generic(hw);
++}
++
++/**
++ * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
++ * @hw: pointer to the HW structure
++ * @offset: offset within the EEPROM to be written to
++ * @words: number of words to write
++ * @data: 16 bit word(s) to be written to the EEPROM
++ *
++ * After checking for invalid values, poll the EEPROM to ensure the previous
++ * command has completed before trying to write the next word. After write
++ * poll for completion.
++ *
++ * If e1000_update_nvm_checksum is not called after this function, the
++ * EEPROM will most likley contain an invalid checksum.
++ **/
++static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
++ u16 words, u16 *data)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ u32 i;
++ u32 eewr = 0;
++ s32 ret_val = 0;
++
++ /* A check for invalid values: offset too large, too many words,
++ * and not enough words. */
++ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
++ (words == 0)) {
++ hw_dbg(hw, "nvm parameter(s) out of bounds\n");
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++ for (i = 0; i < words; i++) {
++ eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
++ ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
++ E1000_NVM_RW_REG_START;
++
++ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
++ if (ret_val)
++ break;
++
++ ew32(EEWR, eewr);
++
++ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
++ if (ret_val)
++ break;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_get_cfg_done_82571 - Poll for configuration done
++ * @hw: pointer to the HW structure
++ *
++ * Reads the management control register for the config done bit to be set.
++ **/
++static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
++{
++ s32 timeout = PHY_CFG_TIMEOUT;
++ s32 ret_val = E1000_SUCCESS;
++
++ while (timeout) {
++ if (er32(EEMNGCTL) &
++ E1000_NVM_CFG_DONE_PORT_0)
++ break;
++ msleep(1);
++ timeout--;
++ }
++ if (!timeout) {
++ hw_dbg(hw, "MNG configuration cycle has not completed.\n");
++ ret_val = -E1000_ERR_RESET;
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
++ * @hw: pointer to the HW structure
++ * @active: TRUE to enable LPLU, FALSE to disable
++ *
++ * Sets the LPLU D0 state according to the active flag. When activating LPLU
++ * this function also disables smart speed and vice versa. LPLU will not be
++ * activated unless the device autonegotiation advertisement meets standards
++ * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
++ * pointer entry point only called by PHY setup routines.
++ **/
++static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 data;
++
++ ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
++ if (ret_val)
++ goto out;
++
++ if (active) {
++ data |= IGP02E1000_PM_D0_LPLU;
++ ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
++ if (ret_val)
++ goto out;
++
++ /* When LPLU is enabled, we should disable SmartSpeed */
++ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
++ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
++ if (ret_val)
++ goto out;
++ } else {
++ data &= ~IGP02E1000_PM_D0_LPLU;
++ ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
++ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
++ * during Dx states where the power conservation is most
++ * important. During driver activity we should enable
++ * SmartSpeed, so performance is maintained. */
++ if (phy->smart_speed == e1000_smart_speed_on) {
++ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++ &data);
++ if (ret_val)
++ goto out;
++
++ data |= IGP01E1000_PSCFR_SMART_SPEED;
++ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++ data);
++ if (ret_val)
++ goto out;
++ } else if (phy->smart_speed == e1000_smart_speed_off) {
++ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++ &data);
++ if (ret_val)
++ goto out;
++
++ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++ data);
++ if (ret_val)
++ goto out;
++ }
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_reset_hw_82571 - Reset hardware
++ * @hw: pointer to the HW structure
++ *
++ * This resets the hardware into a known state. This is a
++ * function pointer entry point called by the api module.
++ **/
++static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
++{
++ u32 ctrl;
++ u32 extcnf_ctrl;
++ u32 ctrl_ext;
++ u32 icr;
++ s32 ret_val;
++ u16 i = 0;
++
++ /* Prevent the PCI-E bus from sticking if there is no TLP connection
++ * on the last TLP read/write transaction when MAC is reset.
++ */
++ ret_val = e1000_disable_pcie_master(hw);
++ if (ret_val)
++ hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
++
++ hw_dbg(hw, "Masking off all interrupts\n");
++ ew32(IMC, 0xffffffff);
++
++ ew32(RCTL, 0);
++ ew32(TCTL, E1000_TCTL_PSP);
++ e1e_flush();
++
++ msleep(10);
++
++ /* Must acquire the MDIO ownership before MAC reset.
++ * Ownership defaults to firmware after a reset. */
++ if (hw->mac.type == e1000_82573) {
++ extcnf_ctrl = er32(EXTCNF_CTRL);
++ extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
++
++ do {
++ ew32(EXTCNF_CTRL, extcnf_ctrl);
++ extcnf_ctrl = er32(EXTCNF_CTRL);
++
++ if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
++ break;
++
++ extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
++
++ msleep(2);
++ i++;
++ } while (i < MDIO_OWNERSHIP_TIMEOUT);
++ }
++
++ ctrl = er32(CTRL);
++
++ hw_dbg(hw, "Issuing a global reset to MAC\n");
++ ew32(CTRL, ctrl | E1000_CTRL_RST);
++
++ if (hw->nvm.type == e1000_nvm_flash_hw) {
++ udelay(10);
++ ctrl_ext = er32(CTRL_EXT);
++ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
++ ew32(CTRL_EXT, ctrl_ext);
++ e1e_flush();
++ }
++
++ ret_val = e1000_get_auto_rd_done(hw);
++ if (ret_val)
++ /* We don't want to continue accessing MAC registers. */
++ goto out;
++
++ /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
++ * Need to wait for Phy configuration completion before accessing
++ * NVM and Phy.
++ */
++ if (hw->mac.type == e1000_82573)
++ msleep(25);
++
++ /* Clear any pending interrupt events. */
++ ew32(IMC, 0xffffffff);
++ icr = er32(ICR);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_init_hw_82571 - Initialize hardware
++ * @hw: pointer to the HW structure
++ *
++ * This inits the hardware readying it for operation.
++ **/
++static s32 e1000_init_hw_82571(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ u32 reg_data;
++ s32 ret_val;
++ u16 i;
++ u16 rar_count = mac->rar_entry_count;
++
++ e1000_initialize_hw_bits_82571(hw);
++
++ /* Initialize identification LED */
++ ret_val = e1000_id_led_init(hw);
++ if (ret_val) {
++ hw_dbg(hw, "Error initializing identification LED\n");
++ goto out;
++ }
++
++ /* Disabling VLAN filtering */
++ hw_dbg(hw, "Initializing the IEEE VLAN\n");
++ e1000_clear_vfta(hw);
++
++ /* Setup the receive address. */
++ /* If, however, a locally administered address was assigned to the
++ * 82571, we must reserve a RAR for it to work around an issue where
++ * resetting one port will reload the MAC on the other port.
++ */
++ if (e1000_get_laa_state_82571(hw))
++ rar_count--;
++ e1000_init_rx_addrs(hw, rar_count);
++
++ /* Zero out the Multicast HASH table */
++ hw_dbg(hw, "Zeroing the MTA\n");
++ for (i = 0; i < mac->mta_reg_count; i++)
++ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
++
++ /* Setup link and flow control */
++ ret_val = e1000_setup_link_82571(hw);
++
++ /* Set the transmit descriptor write-back policy */
++ reg_data = er32(TXDCTL);
++ reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
++ E1000_TXDCTL_FULL_TX_DESC_WB |
++ E1000_TXDCTL_COUNT_DESC;
++ ew32(TXDCTL, reg_data);
++
++ /* ...for both queues. */
++ if (mac->type != e1000_82573) {
++ reg_data = er32(TXDCTL1);
++ reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
++ E1000_TXDCTL_FULL_TX_DESC_WB |
++ E1000_TXDCTL_COUNT_DESC;
++ ew32(TXDCTL1, reg_data);
++ } else {
++ e1000_enable_tx_pkt_filtering(hw);
++ reg_data = er32(GCR);
++ reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
++ ew32(GCR, reg_data);
++ }
++
++ /* Clear all of the statistics registers (clear on read). It is
++ * important that we do this after we have tried to establish link
++ * because the symbol error count will increment wildly if there
++ * is no link.
++ */
++ e1000_clear_hw_cntrs_82571(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
++ * @hw: pointer to the HW structure
++ *
++ * Initializes required hardware-dependent bits needed for normal operation.
++ **/
++static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
++{
++ u32 reg;
++
++ /* Transmit Descriptor Control 0 */
++ reg = er32(TXDCTL);
++ reg |= (1 << 22);
++ ew32(TXDCTL, reg);
++
++ /* Transmit Descriptor Control 1 */
++ reg = er32(TXDCTL1);
++ reg |= (1 << 22);
++ ew32(TXDCTL1, reg);
++
++ /* Transmit Arbitration Control 0 */
++ reg = er32(TARC0);
++ reg &= ~(0xF << 27); /* 30:27 */
++ switch (hw->mac.type) {
++ case e1000_82571:
++ case e1000_82572:
++ reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
++ break;
++ default:
++ break;
++ }
++ ew32(TARC0, reg);
++
++ /* Transmit Arbitration Control 1 */
++ reg = er32(TARC1);
++ switch (hw->mac.type) {
++ case e1000_82571:
++ case e1000_82572:
++ reg &= ~((1 << 29) | (1 << 30));
++ reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
++ if (er32(TCTL) & E1000_TCTL_MULR)
++ reg &= ~(1 << 28);
++ else
++ reg |= (1 << 28);
++ ew32(TARC1, reg);
++ break;
++ default:
++ break;
++ }
++
++ /* Device Control */
++ if (hw->mac.type == e1000_82573) {
++ reg = er32(CTRL);
++ reg &= ~(1 << 29);
++ ew32(CTRL, reg);
++ }
++
++ /* Extended Device Control */
++ if (hw->mac.type == e1000_82573) {
++ reg = er32(CTRL_EXT);
++ reg &= ~(1 << 23);
++ reg |= (1 << 22);
++ ew32(CTRL_EXT, reg);
++ }
++}
++
++/**
++ * e1000_clear_vfta - Clear VLAN filter table
++ * @hw: pointer to the HW structure
++ *
++ * Clears the register array which contains the VLAN filter table by
++ * setting all the values to 0.
++ **/
++void e1000_clear_vfta(struct e1000_hw *hw)
++{
++ u32 offset;
++ u32 vfta_value = 0;
++ u32 vfta_offset = 0;
++ u32 vfta_bit_in_reg = 0;
++
++ if (hw->mac.type == e1000_82573) {
++ if (hw->mng_cookie.vlan_id != 0) {
++ /* The VFTA is a 4096b bit-field, each identifying
++ * a single VLAN ID. The following operations
++ * determine which 32b entry (i.e. offset) into the
++ * array we want to set the VLAN ID (i.e. bit) of
++ * the manageability unit.
++ */
++ vfta_offset = (hw->mng_cookie.vlan_id >>
++ E1000_VFTA_ENTRY_SHIFT) &
++ E1000_VFTA_ENTRY_MASK;
++ vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
++ E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
++ }
++ }
++ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
++ /* If the offset we want to clear is the same offset of the
++ * manageability VLAN ID, then clear all bits except that of
++ * the manageability unit.
++ */
++ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
++ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
++ e1e_flush();
++ }
++}
++
++/**
++ * e1000_mc_addr_list_update_82571 - Update Multicast addresses
++ * @hw: pointer to the HW structure
++ * @mc_addr_list: array of multicast addresses to program
++ * @mc_addr_count: number of multicast addresses to program
++ * @rar_used_count: the first RAR register free to program
++ * @rar_count: total number of supported Receive Address Registers
++ *
++ * Updates the Receive Address Registers and Multicast Table Array.
++ * The caller must have a packed mc_addr_list of multicast addresses.
++ * The parameter rar_count will usually be hw->mac.rar_entry_count
++ * unless there are workarounds that change this.
++ **/
++static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw,
++ u8 *mc_addr_list,
++ u32 mc_addr_count,
++ u32 rar_used_count,
++ u32 rar_count)
++{
++ if (e1000_get_laa_state_82571(hw))
++ rar_count--;
++
++ e1000_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count,
++ rar_used_count, rar_count);
++}
++
++/**
++ * e1000_setup_link_82571 - Setup flow control and link settings
++ * @hw: pointer to the HW structure
++ *
++ * Determines which flow control settings to use, then configures flow
++ * control. Calls the appropriate media-specific link configuration
++ * function. Assuming the adapter has a valid link partner, a valid link
++ * should be established. Assumes the hardware has previously been reset
++ * and the transmitter and receiver are not enabled.
++ **/
++static s32 e1000_setup_link_82571(struct e1000_hw *hw)
++{
++ /* 82573 does not have a word in the NVM to determine
++ * the default flow control setting, so we explicitly
++ * set it to full.
++ */
++ if (hw->mac.type == e1000_82573)
++ hw->mac.fc = e1000_fc_full;
++
++ return e1000_setup_link(hw);
++}
++
++/**
++ * e1000_setup_copper_link_82571 - Configure copper link settings
++ * @hw: pointer to the HW structure
++ *
++ * Configures the link for auto-neg or forced speed and duplex. Then we check
++ * for link, once link is established calls to configure collision distance
++ * and flow control are called.
++ **/
++static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
++{
++ u32 ctrl;
++ u32 led_ctrl;
++ s32 ret_val;
++
++ ctrl = er32(CTRL);
++ ctrl |= E1000_CTRL_SLU;
++ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
++ ew32(CTRL, ctrl);
++
++ switch (hw->phy.type) {
++ case e1000_phy_m88:
++ ret_val = e1000_copper_link_setup_m88(hw);
++ break;
++ case e1000_phy_igp_2:
++ ret_val = e1000_copper_link_setup_igp(hw);
++ /* Setup activity LED */
++ led_ctrl = er32(LEDCTL);
++ led_ctrl &= IGP_ACTIVITY_LED_MASK;
++ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
++ ew32(LEDCTL, led_ctrl);
++ break;
++ default:
++ ret_val = -E1000_ERR_PHY;
++ break;
++ }
++
++ if (ret_val)
++ goto out;
++
++ ret_val = e1000_setup_copper_link(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
++ * @hw: pointer to the HW structure
++ *
++ * Configures collision distance and flow control for fiber and serdes links.
++ * Upon successful setup, poll for link.
++ **/
++static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
++{
++ switch (hw->mac.type) {
++ case e1000_82571:
++ case e1000_82572:
++ /* If SerDes loopback mode is entered, there is no form
++ * of reset to take the adapter out of that mode. So we
++ * have to explicitly take the adapter out of loopback
++ * mode. This prevents drivers from twidling their thumbs
++ * if another tool failed to take it out of loopback mode.
++ */
++ ew32(SCTL,
++ E1000_SCTL_DISABLE_SERDES_LOOPBACK);
++ break;
++ default:
++ break;
++ }
++
++ return e1000_setup_fiber_serdes_link(hw);
++}
++
++/**
++ * e1000_valid_led_default_82571 - Verify a valid default LED config
++ * @hw: pointer to the HW structure
++ * @data: pointer to the NVM (EEPROM)
++ *
++ * Read the EEPROM for the current default LED configuration. If the
++ * LED configuration is not valid, set to a valid LED configuration.
++ **/
++static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
++{
++ s32 ret_val;
++
++ ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
++ if (ret_val) {
++ hw_dbg(hw, "NVM Read Error\n");
++ goto out;
++ }
++
++ if (hw->mac.type == e1000_82573 &&
++ *data == ID_LED_RESERVED_F746)
++ *data = ID_LED_DEFAULT_82573;
++ else if (*data == ID_LED_RESERVED_0000 ||
++ *data == ID_LED_RESERVED_FFFF)
++ *data = ID_LED_DEFAULT;
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_get_laa_state_82571 - Get locally administered address state
++ * @hw: pointer to the HW structure
++ *
++ * Retrieve and return the current locally administed address state.
++ **/
++bool e1000_get_laa_state_82571(struct e1000_hw *hw)
++{
++ if (hw->mac.type != e1000_82571)
++ return 0;
++
++ return hw->dev_spec.e82571.laa_is_present;
++}
++
++/**
++ * e1000_set_laa_state_82571 - Set locally administered address state
++ * @hw: pointer to the HW structure
++ * @state: enable/disable locally administered address
++ *
++ * Enable/Disable the current locally administed address state.
++ **/
++void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
++{
++ if (hw->mac.type != e1000_82571)
++ goto out;
++
++ hw->dev_spec.e82571.laa_is_present = state;
++
++ /* If workaround is activated... */
++ if (state)
++ /* Hold a copy of the LAA in RAR[14] This is done so that
++ * between the time RAR[0] gets clobbered and the time it
++ * gets fixed, the actual LAA is in one of the RARs and no
++ * incoming packets directed to this port are dropped.
++ * Eventually the LAA will be in RAR[0] and RAR[14].
++ */
++ e1000_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
++
++out:
++ return;
++}
++
++/**
++ * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
++ * @hw: pointer to the HW structure
++ *
++ * Verifies that the EEPROM has completed the update. After updating the
++ * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
++ * the checksum fix is not implemented, we need to set the bit and update
++ * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
++ * we need to return bad checksum.
++ **/
++static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ s32 ret_val = E1000_SUCCESS;
++ u16 data;
++
++ if (nvm->type != e1000_nvm_flash_hw)
++ goto out;
++
++ /* Check bit 4 of word 10h. If it is 0, firmware is done updating
++ * 10h-12h. Checksum may need to be fixed.
++ */
++ ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
++ if (ret_val)
++ goto out;
++
++ if (!(data & 0x10)) {
++ /* Read 0x23 and check bit 15. This bit is a 1
++ * when the checksum has already been fixed. If
++ * the checksum is still wrong and this bit is a
++ * 1, we need to return bad checksum. Otherwise,
++ * we need to set this bit to a 1 and update the
++ * checksum.
++ */
++ ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
++ if (ret_val)
++ goto out;
++
++ if (!(data & 0x8000)) {
++ data |= 0x8000;
++ ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
++ if (ret_val)
++ goto out;
++ ret_val = e1000_update_nvm_checksum(hw);
++ }
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
++ * @hw: pointer to the HW structure
++ *
++ * Clears the hardware counters by reading the counter registers.
++ **/
++static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
++{
++ u32 temp;
++
++ e1000_clear_hw_cntrs_base(hw);
++
++ temp = er32(PRC64);
++ temp = er32(PRC127);
++ temp = er32(PRC255);
++ temp = er32(PRC511);
++ temp = er32(PRC1023);
++ temp = er32(PRC1522);
++ temp = er32(PTC64);
++ temp = er32(PTC127);
++ temp = er32(PTC255);
++ temp = er32(PTC511);
++ temp = er32(PTC1023);
++ temp = er32(PTC1522);
++
++ temp = er32(ALGNERRC);
++ temp = er32(RXERRC);
++ temp = er32(TNCRS);
++ temp = er32(CEXTERR);
++ temp = er32(TSCTC);
++ temp = er32(TSCTFC);
++
++ temp = er32(MGTPRC);
++ temp = er32(MGTPDC);
++ temp = er32(MGTPTC);
++
++ temp = er32(IAC);
++ temp = er32(ICRXOC);
++
++ temp = er32(ICRXPTC);
++ temp = er32(ICRXATC);
++ temp = er32(ICTXPTC);
++ temp = er32(ICTXATC);
++ temp = er32(ICTXQEC);
++ temp = er32(ICTXQMTC);
++ temp = er32(ICRXDMTC);
++}
++
++static struct e1000_mac_operations e82571_mac_ops = {
++ .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
++ /* .check_for_link: media type dependent */
++ .cleanup_led = e1000_cleanup_led_generic,
++ .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
++ .get_bus_info = e1000_get_bus_info_pcie,
++ /* .get_link_up_info: media type dependent */
++ .led_on = e1000_led_on_generic,
++ .led_off = e1000_led_off_generic,
++ .mc_addr_list_update = e1000_mc_addr_list_update_82571,
++ .reset_hw = e1000_reset_hw_82571,
++ .init_hw = e1000_init_hw_82571,
++ .setup_link = e1000_setup_link_82571,
++ /* .setup_physical_interface: media type dependent */
++};
++
++static struct e1000_phy_operations e82_phy_ops_igp = {
++ .acquire_phy = e1000_get_hw_semaphore_82571,
++ .check_reset_block = e1000_check_reset_block_generic,
++ .commit_phy = NULL,
++ .force_speed_duplex = e1000_phy_force_speed_duplex_igp,
++ .get_cfg_done = e1000_get_cfg_done_82571,
++ .get_cable_length = e1000_get_cable_length_igp_2,
++ .get_phy_info = e1000_get_phy_info_igp,
++ .read_phy_reg = e1000_read_phy_reg_igp,
++ .release_phy = e1000_put_hw_semaphore_82571,
++ .reset_phy = e1000_phy_hw_reset_generic,
++ .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
++ .set_d3_lplu_state = e1000_set_d3_lplu_state,
++ .write_phy_reg = e1000_write_phy_reg_igp,
++};
++
++static struct e1000_phy_operations e82_phy_ops_m88 = {
++ .acquire_phy = e1000_get_hw_semaphore_82571,
++ .check_reset_block = e1000_check_reset_block_generic,
++ .commit_phy = e1000_phy_sw_reset,
++ .force_speed_duplex = e1000_phy_force_speed_duplex_m88,
++ .get_cfg_done = e1000_get_cfg_done,
++ .get_cable_length = e1000_get_cable_length_m88,
++ .get_phy_info = e1000_get_phy_info_m88,
++ .read_phy_reg = e1000_read_phy_reg_m88,
++ .release_phy = e1000_put_hw_semaphore_82571,
++ .reset_phy = e1000_phy_hw_reset_generic,
++ .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
++ .set_d3_lplu_state = e1000_set_d3_lplu_state,
++ .write_phy_reg = e1000_write_phy_reg_m88,
++};
++
++static struct e1000_nvm_operations e82571_nvm_ops = {
++ .acquire_nvm = e1000_acquire_nvm_82571,
++ .read_nvm = e1000_read_nvm_spi,
++ .release_nvm = e1000_release_nvm_82571,
++ .update_nvm = e1000_update_nvm_checksum_82571,
++ .valid_led_default = e1000_valid_led_default_82571,
++ .validate_nvm = e1000_validate_nvm_checksum_82571,
++ .write_nvm = e1000_write_nvm_82571,
++};
++
++static struct e1000_nvm_operations e82573_nvm_ops = {
++ .acquire_nvm = e1000_acquire_nvm_82571,
++ .read_nvm = e1000_read_nvm_eerd,
++ .release_nvm = e1000_release_nvm_82571,
++ .update_nvm = e1000_update_nvm_checksum_82571,
++ .valid_led_default = e1000_valid_led_default_82571,
++ .validate_nvm = e1000_validate_nvm_checksum_82571,
++ .write_nvm = e1000_write_nvm_82571,
++};
++
++struct e1000_info e1000_82571_info = {
++ .mac = e1000_82571,
++ .flags = FLAG_HAS_HW_VLAN_FILTER
++ | FLAG_HAS_JUMBO_FRAMES
++ | FLAG_HAS_STATS_PTC_PRC
++ | FLAG_HAS_WOL
++ | FLAG_APME_IN_CTRL3
++ | FLAG_RX_CSUM_ENABLED
++ | FLAG_HAS_CTRLEXT_ON_LOAD
++ | FLAG_HAS_STATS_ICR_ICT
++ | FLAG_HAS_SMART_POWER_DOWN
++ | FLAG_RESET_OVERWRITES_LAA /* errata */
++ | FLAG_TARC_SPEED_MODE_BIT /* errata */
++ | FLAG_APME_CHECK_PORT_B,
++ .pba = 38,
++ .get_invariants = e1000_get_invariants_82571,
++ .mac_ops = &e82571_mac_ops,
++ .phy_ops = &e82_phy_ops_igp,
++ .nvm_ops = &e82571_nvm_ops,
++};
++
++struct e1000_info e1000_82572_info = {
++ .mac = e1000_82572,
++ .flags = FLAG_HAS_HW_VLAN_FILTER
++ | FLAG_HAS_JUMBO_FRAMES
++ | FLAG_HAS_STATS_PTC_PRC
++ | FLAG_HAS_WOL
++ | FLAG_APME_IN_CTRL3
++ | FLAG_RX_CSUM_ENABLED
++ | FLAG_HAS_CTRLEXT_ON_LOAD
++ | FLAG_HAS_STATS_ICR_ICT
++ | FLAG_TARC_SPEED_MODE_BIT, /* errata */
++ .pba = 38,
++ .get_invariants = e1000_get_invariants_82571,
++ .mac_ops = &e82571_mac_ops,
++ .phy_ops = &e82_phy_ops_igp,
++ .nvm_ops = &e82571_nvm_ops,
++};
++
++struct e1000_info e1000_82573_info = {
++ .mac = e1000_82573,
++ .flags = FLAG_HAS_HW_VLAN_FILTER
++ | FLAG_HAS_JUMBO_FRAMES
++ | FLAG_HAS_STATS_PTC_PRC
++ | FLAG_HAS_WOL
++ | FLAG_APME_IN_CTRL3
++ | FLAG_RX_CSUM_ENABLED
++ | FLAG_HAS_STATS_ICR_ICT
++ | FLAG_HAS_SMART_POWER_DOWN
++ | FLAG_HAS_AMT
++ | FLAG_HAS_ASPM
++ | FLAG_HAS_ERT
++ | FLAG_HAS_SWSM_ON_LOAD,
++ .pba = 20,
++ .get_invariants = e1000_get_invariants_82571,
++ .mac_ops = &e82571_mac_ops,
++ .phy_ops = &e82_phy_ops_m88,
++ .nvm_ops = &e82573_nvm_ops,
++};
++
+diff --git a/drivers/net/e1000e/Makefile b/drivers/net/e1000e/Makefile
+new file mode 100644
+index 0000000..650f866
+--- /dev/null
++++ b/drivers/net/e1000e/Makefile
+@@ -0,0 +1,37 @@
++################################################################################
++#
++# Intel PRO/1000 Linux driver
++# Copyright(c) 1999 - 2007 Intel Corporation.
++#
++# This program is free software; you can redistribute it and/or modify it
++# under the terms and conditions of the GNU General Public License,
++# version 2, as published by the Free Software Foundation.
++#
++# This program is distributed in the hope it will be useful, but WITHOUT
++# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
++# more details.
++#
++# You should have received a copy of the GNU General Public License along with
++# this program; if not, write to the Free Software Foundation, Inc.,
++# 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++#
++# The full GNU General Public License is included in this distribution in
++# the file called "COPYING".
++#
++# Contact Information:
++# Linux NICS <linux.nics@intel.com>
++# e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
++# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++#
++################################################################################
++
++#
++# Makefile for the Intel(R) PRO/1000 ethernet driver
++#
++
++obj-$(CONFIG_E1000E) += e1000e.o
++
++e1000e-objs := 82571.o ich8lan.o es2lan.o \
++ lib.o phy.o param.o ethtool.o netdev.o
++
+diff --git a/drivers/net/e1000e/defines.h b/drivers/net/e1000e/defines.h
+new file mode 100644
+index 0000000..e0a36f1
+--- /dev/null
++++ b/drivers/net/e1000e/defines.h
+@@ -0,0 +1,738 @@
++/*******************************************************************************
++
++ Intel PRO/1000 Linux driver
++ Copyright(c) 1999 - 2007 Intel Corporation.
++
++ This program is free software; you can redistribute it and/or modify it
++ under the terms and conditions of the GNU General Public License,
++ version 2, as published by the Free Software Foundation.
++
++ This program is distributed in the hope it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
++ more details.
++
++ You should have received a copy of the GNU General Public License along with
++ this program; if not, write to the Free Software Foundation, Inc.,
++ 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++ The full GNU General Public License is included in this distribution in
++ the file called "COPYING".
++
++ Contact Information:
++ Linux NICS <linux.nics@intel.com>
++ e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
++ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++#ifndef _E1000_DEFINES_H_
++#define _E1000_DEFINES_H_
++
++#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
++#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
++#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
++#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
++#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
++#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
++#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
++#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
++#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
++#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
++#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
++#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
++#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
++#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
++#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
++#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
++#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
++#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
++
++/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
++#define REQ_TX_DESCRIPTOR_MULTIPLE 8
++#define REQ_RX_DESCRIPTOR_MULTIPLE 8
++
++/* Definitions for power management and wakeup registers */
++/* Wake Up Control */
++#define E1000_WUC_APME 0x00000001 /* APM Enable */
++#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
++
++/* Wake Up Filter Control */
++#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
++#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
++#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
++#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
++#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
++
++/* Extended Device Control */
++#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
++#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
++#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
++#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
++#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
++#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
++#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
++#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
++
++/* Receive Decriptor bit definitions */
++#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
++#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
++#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
++#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
++#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */
++#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
++#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
++#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
++#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
++#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
++#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
++#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
++#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
++
++#define E1000_RXDEXT_STATERR_CE 0x01000000
++#define E1000_RXDEXT_STATERR_SE 0x02000000
++#define E1000_RXDEXT_STATERR_SEQ 0x04000000
++#define E1000_RXDEXT_STATERR_CXE 0x10000000
++#define E1000_RXDEXT_STATERR_RXE 0x80000000
++
++/* mask to determine if packets should be dropped due to frame errors */
++#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
++ E1000_RXD_ERR_CE | \
++ E1000_RXD_ERR_SE | \
++ E1000_RXD_ERR_SEQ | \
++ E1000_RXD_ERR_CXE | \
++ E1000_RXD_ERR_RXE)
++
++/* Same mask, but for extended and packet split descriptors */
++#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
++ E1000_RXDEXT_STATERR_CE | \
++ E1000_RXDEXT_STATERR_SE | \
++ E1000_RXDEXT_STATERR_SEQ | \
++ E1000_RXDEXT_STATERR_CXE | \
++ E1000_RXDEXT_STATERR_RXE)
++
++#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
++
++/* Management Control */
++#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
++#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
++#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
++#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
++#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
++#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address
++ * filtering */
++#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host
++ * memory */
++
++/* Receive Control */
++#define E1000_RCTL_EN 0x00000002 /* enable */
++#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
++#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
++#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
++#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
++#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
++#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
++#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
++#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
++#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
++#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
++#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
++/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
++#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
++#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
++#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
++#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
++/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
++#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
++#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
++#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
++#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
++#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
++#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
++#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
++#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
++
++/* Use byte values for the following shift parameters
++ * Usage:
++ * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
++ * E1000_PSRCTL_BSIZE0_MASK) |
++ * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
++ * E1000_PSRCTL_BSIZE1_MASK) |
++ * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
++ * E1000_PSRCTL_BSIZE2_MASK) |
++ * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
++ * E1000_PSRCTL_BSIZE3_MASK))
++ * where value0 = [128..16256], default=256
++ * value1 = [1024..64512], default=4096
++ * value2 = [0..64512], default=4096
++ * value3 = [0..64512], default=0
++ */
++
++#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
++#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
++#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
++#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
++
++#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
++#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
++#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
++#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
++
++/* SWFW_SYNC Definitions */
++#define E1000_SWFW_EEP_SM 0x1
++#define E1000_SWFW_PHY0_SM 0x2
++#define E1000_SWFW_PHY1_SM 0x4
++
++/* Device Control */
++#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
++#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
++#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
++#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
++#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
++#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
++#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
++#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
++#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
++#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
++#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
++#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
++#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
++#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
++#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
++#define E1000_CTRL_RST 0x04000000 /* Global reset */
++#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
++#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
++#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
++#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
++
++/* Bit definitions for the Management Data IO (MDIO) and Management Data
++ * Clock (MDC) pins in the Device Control Register.
++ */
++
++/* Device Status */
++#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
++#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
++#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
++#define E1000_STATUS_FUNC_SHIFT 2
++#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
++#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
++#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
++#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
++#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
++#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */
++#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
++
++/* Constants used to intrepret the masked PCI-X bus speed. */
++
++#define HALF_DUPLEX 1
++#define FULL_DUPLEX 2
++
++
++#define ADVERTISE_10_HALF 0x0001
++#define ADVERTISE_10_FULL 0x0002
++#define ADVERTISE_100_HALF 0x0004
++#define ADVERTISE_100_FULL 0x0008
++#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
++#define ADVERTISE_1000_FULL 0x0020
++
++/* 1000/H is not supported, nor spec-compliant. */
++#define E1000_ALL_SPEED_DUPLEX ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
++ ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
++ ADVERTISE_1000_FULL)
++#define E1000_ALL_NOT_GIG ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
++ ADVERTISE_100_HALF | ADVERTISE_100_FULL)
++#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
++#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
++#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
++
++#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
++
++/* LED Control */
++#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
++#define E1000_LEDCTL_LED0_MODE_SHIFT 0
++#define E1000_LEDCTL_LED0_IVRT 0x00000040
++#define E1000_LEDCTL_LED0_BLINK 0x00000080
++
++#define E1000_LEDCTL_MODE_LED_ON 0xE
++#define E1000_LEDCTL_MODE_LED_OFF 0xF
++
++/* Transmit Descriptor bit definitions */
++#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
++#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
++#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
++#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
++#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
++#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
++#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
++#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
++#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
++#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
++#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
++#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
++#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
++#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
++#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
++#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
++#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
++#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
++#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
++
++/* Transmit Control */
++#define E1000_TCTL_EN 0x00000002 /* enable tx */
++#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
++#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
++#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
++#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
++#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
++
++/* Transmit Arbitration Count */
++
++/* SerDes Control */
++#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
++
++/* Receive Checksum Control */
++#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
++#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
++
++/* Header split receive */
++#define E1000_RFCTL_EXTEN 0x00008000
++#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
++#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
++
++/* Collision related configuration parameters */
++#define E1000_COLLISION_THRESHOLD 15
++#define E1000_CT_SHIFT 4
++#define E1000_COLLISION_DISTANCE 63
++#define E1000_COLD_SHIFT 12
++
++/* Default values for the transmit IPG register */
++#define DEFAULT_82543_TIPG_IPGT_COPPER 8
++
++#define E1000_TIPG_IPGT_MASK 0x000003FF
++
++#define DEFAULT_82543_TIPG_IPGR1 8
++#define E1000_TIPG_IPGR1_SHIFT 10
++
++#define DEFAULT_82543_TIPG_IPGR2 6
++#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
++#define E1000_TIPG_IPGR2_SHIFT 20
++
++#define MAX_JUMBO_FRAME_SIZE 0x3F00
++
++/* Extended Configuration Control and Size */
++#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
++#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
++#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
++#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000
++#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16
++#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000
++#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16
++
++#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
++#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
++#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
++#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
++
++#define E1000_KABGTXD_BGSQLBIAS 0x00050000
++
++/* PBA constants */
++#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */
++#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
++
++#define E1000_PBS_16K E1000_PBA_16K
++
++#define IFS_MAX 80
++#define IFS_MIN 40
++#define IFS_RATIO 4
++#define IFS_STEP 10
++#define MIN_NUM_XMITS 1000
++
++/* SW Semaphore Register */
++#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
++#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
++#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
++
++/* Interrupt Cause Read */
++#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
++#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
++#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
++#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
++#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
++#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */
++
++/* This defines the bits that are set in the Interrupt Mask
++ * Set/Read Register. Each bit is documented below:
++ * o RXT0 = Receiver Timer Interrupt (ring 0)
++ * o TXDW = Transmit Descriptor Written Back
++ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
++ * o RXSEQ = Receive Sequence Error
++ * o LSC = Link Status Change
++ */
++#define IMS_ENABLE_MASK ( \
++ E1000_IMS_RXT0 | \
++ E1000_IMS_TXDW | \
++ E1000_IMS_RXDMT0 | \
++ E1000_IMS_RXSEQ | \
++ E1000_IMS_LSC)
++
++/* Interrupt Mask Set */
++#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
++#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
++#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
++#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
++#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
++
++/* Interrupt Cause Set */
++#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
++#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
++
++/* Transmit Descriptor Control */
++#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
++#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
++#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
++#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
++#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
++ still to be processed. */
++
++/* Flow Control Constants */
++#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
++#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
++#define FLOW_CONTROL_TYPE 0x8808
++
++/* 802.1q VLAN Packet Size */
++#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
++
++/* Receive Address */
++/* Number of high/low register pairs in the RAR. The RAR (Receive Address
++ * Registers) holds the directed and multicast addresses that we monitor.
++ * Technically, we have 16 spots. However, we reserve one of these spots
++ * (RAR[15]) for our directed address used by controllers with
++ * manageability enabled, allowing us room for 15 multicast addresses.
++ */
++#define E1000_RAR_ENTRIES 15
++#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
++
++/* Error Codes */
++#define E1000_SUCCESS 0
++#define E1000_ERR_NVM 1
++#define E1000_ERR_PHY 2
++#define E1000_ERR_CONFIG 3
++#define E1000_ERR_PARAM 4
++#define E1000_ERR_MAC_INIT 5
++#define E1000_ERR_PHY_TYPE 6
++#define E1000_ERR_RESET 9
++#define E1000_ERR_MASTER_REQUESTS_PENDING 10
++#define E1000_ERR_HOST_INTERFACE_COMMAND 11
++#define E1000_BLK_PHY_RESET 12
++#define E1000_ERR_SWFW_SYNC 13
++#define E1000_NOT_IMPLEMENTED 14
++
++/* Loop limit on how long we wait for auto-negotiation to complete */
++#define FIBER_LINK_UP_LIMIT 50
++#define COPPER_LINK_UP_LIMIT 10
++#define PHY_AUTO_NEG_LIMIT 45
++#define PHY_FORCE_LIMIT 20
++/* Number of 100 microseconds we wait for PCI Express master disable */
++#define MASTER_DISABLE_TIMEOUT 800
++/* Number of milliseconds we wait for PHY configuration done after MAC reset */
++#define PHY_CFG_TIMEOUT 100
++/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
++#define MDIO_OWNERSHIP_TIMEOUT 10
++/* Number of milliseconds for NVM auto read done after MAC reset. */
++#define AUTO_READ_DONE_TIMEOUT 10
++
++/* Flow Control */
++#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
++
++/* Transmit Configuration Word */
++#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
++#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
++#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
++#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
++#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
++
++/* Receive Configuration Word */
++#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
++#define E1000_RXCW_C 0x20000000 /* Receive config */
++#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
++
++/* PCI Express Control */
++#define E1000_GCR_RXD_NO_SNOOP 0x00000001
++#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
++#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
++#define E1000_GCR_TXD_NO_SNOOP 0x00000008
++#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
++#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
++
++#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
++ E1000_GCR_RXDSCW_NO_SNOOP | \
++ E1000_GCR_RXDSCR_NO_SNOOP | \
++ E1000_GCR_TXD_NO_SNOOP | \
++ E1000_GCR_TXDSCW_NO_SNOOP | \
++ E1000_GCR_TXDSCR_NO_SNOOP)
++
++/* PHY Control Register */
++#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
++#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
++#define MII_CR_POWER_DOWN 0x0800 /* Power down */
++#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
++#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
++#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
++#define MII_CR_SPEED_1000 0x0040
++#define MII_CR_SPEED_100 0x2000
++#define MII_CR_SPEED_10 0x0000
++
++/* PHY Status Register */
++#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
++#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
++
++/* Autoneg Advertisement Register */
++#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
++#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
++#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
++#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
++#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
++#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
++
++/* Link Partner Ability Register (Base Page) */
++#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
++#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
++
++/* Autoneg Expansion Register */
++
++/* 1000BASE-T Control Register */
++#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
++#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
++ /* 0=DTE device */
++#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
++ /* 0=Configure PHY as Slave */
++#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
++ /* 0=Automatic Master/Slave config */
++
++/* 1000BASE-T Status Register */
++#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
++#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
++
++
++/* PHY 1000 MII Register/Bit Definitions */
++/* PHY Registers defined by IEEE */
++#define PHY_CONTROL 0x00 /* Control Register */
++#define PHY_STATUS 0x01 /* Status Regiser */
++#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
++#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
++#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
++#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
++#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
++#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
++
++/* NVM Control */
++#define E1000_EECD_SK 0x00000001 /* NVM Clock */
++#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
++#define E1000_EECD_DI 0x00000004 /* NVM Data In */
++#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
++#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
++#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
++#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
++#define E1000_EECD_ADDR_BITS 0x00000400 /* NVM Addressing bits based on type
++ * (0-small, 1-large) */
++#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
++#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
++#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
++#define E1000_EECD_SIZE_EX_SHIFT 11
++#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
++#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
++#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
++
++#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write registers */
++#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
++#define E1000_NVM_RW_REG_START 1 /* Start operation */
++#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
++#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */
++#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
++#define E1000_FLASH_UPDATES 2000
++
++/* NVM Word Offsets */
++#define NVM_ID_LED_SETTINGS 0x0004
++#define NVM_INIT_CONTROL2_REG 0x000F
++#define NVM_INIT_CONTROL3_PORT_B 0x0014
++#define NVM_INIT_3GIO_3 0x001A
++#define NVM_INIT_CONTROL3_PORT_A 0x0024
++#define NVM_CFG 0x0012
++#define NVM_CHECKSUM_REG 0x003F
++
++#define E1000_NVM_CFG_DONE_PORT_0 0x40000 /* MNG config cycle done */
++#define E1000_NVM_CFG_DONE_PORT_1 0x80000 /* ...for second port */
++
++/* Mask bits for fields in Word 0x0f of the NVM */
++#define NVM_WORD0F_PAUSE_MASK 0x3000
++#define NVM_WORD0F_PAUSE 0x1000
++#define NVM_WORD0F_ASM_DIR 0x2000
++
++/* Mask bits for fields in Word 0x1a of the NVM */
++#define NVM_WORD1A_ASPM_MASK 0x000C
++
++/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
++#define NVM_SUM 0xBABA
++
++#define NVM_WORD_SIZE_BASE_SHIFT 6
++
++/* NVM Commands - Microwire */
++
++/* NVM Commands - SPI */
++#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
++#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */
++#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
++#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
++#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
++#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
++
++/* SPI NVM Status Register */
++#define NVM_STATUS_RDY_SPI 0x01
++
++/* Word definitions for ID LED Settings */
++#define ID_LED_RESERVED_0000 0x0000
++#define ID_LED_RESERVED_FFFF 0xFFFF
++#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
++ (ID_LED_OFF1_OFF2 << 8) | \
++ (ID_LED_DEF1_DEF2 << 4) | \
++ (ID_LED_DEF1_DEF2))
++#define ID_LED_DEF1_DEF2 0x1
++#define ID_LED_DEF1_ON2 0x2
++#define ID_LED_DEF1_OFF2 0x3
++#define ID_LED_ON1_DEF2 0x4
++#define ID_LED_ON1_ON2 0x5
++#define ID_LED_ON1_OFF2 0x6
++#define ID_LED_OFF1_DEF2 0x7
++#define ID_LED_OFF1_ON2 0x8
++#define ID_LED_OFF1_OFF2 0x9
++
++#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
++#define IGP_ACTIVITY_LED_ENABLE 0x0300
++#define IGP_LED3_MODE 0x07000000
++
++/* PCI/PCI-X/PCI-EX Config space */
++#define PCI_HEADER_TYPE_REGISTER 0x0E
++#define PCIE_LINK_STATUS 0x12
++
++#define PCI_HEADER_TYPE_MULTIFUNC 0x80
++#define PCIE_LINK_WIDTH_MASK 0x3F0
++#define PCIE_LINK_WIDTH_SHIFT 4
++
++#define PHY_REVISION_MASK 0xFFFFFFF0
++#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
++#define MAX_PHY_MULTI_PAGE_REG 0xF
++
++/* Bit definitions for valid PHY IDs. */
++/* I = Integrated
++ * E = External
++ */
++#define M88E1000_E_PHY_ID 0x01410C50
++#define M88E1000_I_PHY_ID 0x01410C30
++#define M88E1011_I_PHY_ID 0x01410C20
++#define IGP01E1000_I_PHY_ID 0x02A80380
++#define M88E1111_I_PHY_ID 0x01410CC0
++#define GG82563_E_PHY_ID 0x01410CA0
++#define IGP03E1000_E_PHY_ID 0x02A80390
++#define IFE_E_PHY_ID 0x02A80330
++#define IFE_PLUS_E_PHY_ID 0x02A80320
++#define IFE_C_E_PHY_ID 0x02A80310
++
++/* M88E1000 Specific Registers */
++#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
++#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
++#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
++
++#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
++#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
++
++/* M88E1000 PHY Specific Control Register */
++#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
++#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
++ /* Manual MDI configuration */
++#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
++#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover,
++ * 100BASE-TX/10BASE-T:
++ * MDI Mode
++ */
++#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled
++ * all speeds.
++ */
++ /* 1=Enable Extended 10BASE-T distance
++ * (Lower 10BASE-T RX Threshold)
++ * 0=Normal 10BASE-T RX Threshold */
++ /* 1=5-Bit interface in 100BASE-TX
++ * 0=MII interface in 100BASE-TX */
++#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
++
++/* M88E1000 PHY Specific Status Register */
++#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
++#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
++#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
++#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M;
++ * 3=110-140M;4=>140M */
++#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
++#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
++
++#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
++
++/* Number of times we will attempt to autonegotiate before downshifting if we
++ * are the master */
++#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
++#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
++/* Number of times we will attempt to autonegotiate before downshifting if we
++ * are the slave */
++#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
++#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
++#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
++
++/* M88EC018 Rev 2 specific DownShift settings */
++#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
++#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
++
++/* Bits...
++ * 15-5: page
++ * 4-0: register offset
++ */
++#define GG82563_PAGE_SHIFT 5
++#define GG82563_REG(page, reg) \
++ (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
++#define GG82563_MIN_ALT_REG 30
++
++/* GG82563 Specific Registers */
++#define GG82563_PHY_SPEC_CTRL \
++ GG82563_REG(0, 16) /* PHY Specific Control */
++#define GG82563_PHY_PAGE_SELECT \
++ GG82563_REG(0, 22) /* Page Select */
++#define GG82563_PHY_SPEC_CTRL_2 \
++ GG82563_REG(0, 26) /* PHY Specific Control 2 */
++#define GG82563_PHY_PAGE_SELECT_ALT \
++ GG82563_REG(0, 29) /* Alternate Page Select */
++
++#define GG82563_PHY_MAC_SPEC_CTRL \
++ GG82563_REG(2, 21) /* MAC Specific Control Register */
++
++#define GG82563_PHY_DSP_DISTANCE \
++ GG82563_REG(5, 26) /* DSP Distance */
++
++/* Page 193 - Port Control Registers */
++#define GG82563_PHY_KMRN_MODE_CTRL \
++ GG82563_REG(193, 16) /* Kumeran Mode Control */
++#define GG82563_PHY_PWR_MGMT_CTRL \
++ GG82563_REG(193, 20) /* Power Management Control */
++
++/* Page 194 - KMRN Registers */
++#define GG82563_PHY_INBAND_CTRL \
++ GG82563_REG(194, 18) /* Inband Control */
++
++/* MDI Control */
++#define E1000_MDIC_REG_SHIFT 16
++#define E1000_MDIC_PHY_SHIFT 21
++#define E1000_MDIC_OP_WRITE 0x04000000
++#define E1000_MDIC_OP_READ 0x08000000
++#define E1000_MDIC_READY 0x10000000
++#define E1000_MDIC_ERROR 0x40000000
++
++/* SerDes Control */
++#define E1000_GEN_POLL_TIMEOUT 640
++
++#endif /* _E1000_DEFINES_H_ */
+diff --git a/drivers/net/e1000e/e1000.h b/drivers/net/e1000e/e1000.h
+new file mode 100644
+index 0000000..65c31d3
+--- /dev/null
++++ b/drivers/net/e1000e/e1000.h
+@@ -0,0 +1,518 @@
++/*******************************************************************************
++
++ Intel PRO/1000 Linux driver
++ Copyright(c) 1999 - 2007 Intel Corporation.
++
++ This program is free software; you can redistribute it and/or modify it
++ under the terms and conditions of the GNU General Public License,
++ version 2, as published by the Free Software Foundation.
++
++ This program is distributed in the hope it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
++ more details.
++
++ You should have received a copy of the GNU General Public License along with
++ this program; if not, write to the Free Software Foundation, Inc.,
++ 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++ The full GNU General Public License is included in this distribution in
++ the file called "COPYING".
++
++ Contact Information:
++ Linux NICS <linux.nics@intel.com>
++ e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
++ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++/* Linux PRO/1000 Ethernet Driver main header file */
++
++#ifndef _E1000_H_
++#define _E1000_H_
++
++#include <linux/netdevice.h>
++#include <linux/ethtool.h>
++#include <linux/pci.h>
++#include <asm/io.h>
++
++#include "hw.h"
++
++struct e1000_info;
++
++#define ndev_printk(level, netdev, format, arg...) \
++ printk(level "%s: %s: " format, (netdev)->dev.parent->bus_id, \
++ (netdev)->name, ## arg)
++
++#ifdef DEBUG
++#define ndev_dbg(netdev, format, arg...) \
++ ndev_printk(KERN_DEBUG , netdev, format, ## arg)
++#else
++#define ndev_dbg(netdev, format, arg...) do { (void)(netdev); } while (0)
++#endif
++
++#define ndev_err(netdev, format, arg...) \
++ ndev_printk(KERN_ERR , netdev, format, ## arg)
++#define ndev_info(netdev, format, arg...) \
++ ndev_printk(KERN_INFO , netdev, format, ## arg)
++#define ndev_warn(netdev, format, arg...) \
++ ndev_printk(KERN_WARNING , netdev, format, ## arg)
++#define ndev_notice(netdev, format, arg...) \
++ ndev_printk(KERN_NOTICE , netdev, format, ## arg)
++
++
++/* TX/RX descriptor defines */
++#define E1000_DEFAULT_TXD 256
++#define E1000_MAX_TXD 4096
++#define E1000_MIN_TXD 80
++
++#define E1000_DEFAULT_RXD 256
++#define E1000_MAX_RXD 4096
++#define E1000_MIN_RXD 80
++
++/* Early Receive defines */
++#define E1000_ERT_2048 0x100
++
++#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */
++
++/* How many Tx Descriptors do we need to call netif_wake_queue ? */
++/* How many Rx Buffers do we bundle into one write to the hardware ? */
++#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */
++
++#define AUTO_ALL_MODES 0
++#define E1000_EEPROM_APME 0x0400
++
++#define E1000_MNG_VLAN_NONE (-1)
++
++/* Number of packet split data buffers (not including the header buffer) */
++#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1)
++
++enum e1000_boards {
++ board_82571,
++ board_82572,
++ board_82573,
++ board_80003es2lan,
++ board_ich8lan,
++ board_ich9lan,
++};
++
++struct e1000_queue_stats {
++ u64 packets;
++ u64 bytes;
++};
++
++struct e1000_ps_page {
++ struct page *page;
++ u64 dma; /* must be u64 - written to hw */
++};
++
++/*
++ * wrappers around a pointer to a socket buffer,
++ * so a DMA handle can be stored along with the buffer
++ */
++struct e1000_buffer {
++ dma_addr_t dma;
++ struct sk_buff *skb;
++ union {
++ /* TX */
++ struct {
++ unsigned long time_stamp;
++ u16 length;
++ u16 next_to_watch;
++ };
++ /* RX */
++ struct page *page;
++ };
++
++};
++
++struct e1000_ring {
++ void *desc; /* pointer to ring memory */
++ dma_addr_t dma; /* phys address of ring */
++ unsigned int size; /* length of ring in bytes */
++ unsigned int count; /* number of desc. in ring */
++
++ u16 next_to_use;
++ u16 next_to_clean;
++
++ u16 head;
++ u16 tail;
++
++ /* array of buffer information structs */
++ struct e1000_buffer *buffer_info;
++
++ union {
++ /* for TX */
++ struct {
++ bool last_tx_tso; /* used to mark tso desc. */
++ };
++ /* for RX */
++ struct {
++ /* arrays of page information for packet split */
++ struct e1000_ps_page *ps_pages;
++ struct sk_buff *rx_skb_top;
++ };
++ };
++
++ struct e1000_queue_stats stats;
++};
++
++/* board specific private data structure */
++struct e1000_adapter {
++ struct timer_list watchdog_timer;
++ struct timer_list phy_info_timer;
++ struct timer_list blink_timer;
++
++ struct work_struct reset_task;
++ struct work_struct watchdog_task;
++
++ const struct e1000_info *ei;
++
++ struct vlan_group *vlgrp;
++ u32 bd_number;
++ u32 rx_buffer_len;
++ u16 mng_vlan_id;
++ u16 link_speed;
++ u16 link_duplex;
++
++ spinlock_t tx_queue_lock; /* prevent concurrent tail updates */
++
++ /* this is still needed for 82571 and above */
++ atomic_t irq_sem;
++
++ /* track device up/down/testing state */
++ unsigned long state;
++
++ /* Interrupt Throttle Rate */
++ u32 itr;
++ u32 itr_setting;
++ u16 tx_itr;
++ u16 rx_itr;
++
++ /*
++ * TX
++ */
++ struct e1000_ring *tx_ring /* One per active queue */
++ ____cacheline_aligned_in_smp;
++
++ unsigned long tx_queue_len;
++ unsigned int restart_queue;
++ u32 txd_cmd;
++
++ bool detect_tx_hung;
++ u8 tx_timeout_factor;
++
++ u32 tx_int_delay;
++ u32 tx_abs_int_delay;
++
++ unsigned int total_tx_bytes;
++ unsigned int total_tx_packets;
++ unsigned int total_rx_bytes;
++ unsigned int total_rx_packets;
++
++ /* TX stats */
++ u64 tpt_old;
++ u64 colc_old;
++ u64 gotcl_old;
++ u32 gotcl;
++ u32 tx_timeout_count;
++ u32 tx_fifo_head;
++ u32 tx_head_addr;
++ u32 tx_fifo_size;
++
++ /*
++ * RX
++ */
++ bool (*clean_rx) (struct e1000_adapter *adapter,
++ int *work_done, int work_to_do)
++ ____cacheline_aligned_in_smp;
++ void (*alloc_rx_buf) (struct e1000_adapter *adapter,
++ int cleaned_count);
++ struct e1000_ring *rx_ring;
++
++ u32 rx_int_delay;
++ u32 rx_abs_int_delay;
++
++ /* RX stats */
++ u64 hw_csum_err;
++ u64 hw_csum_good;
++ u64 rx_hdr_split;
++ u64 gorcl_old;
++ u32 gorcl;
++ u32 alloc_rx_buff_failed;
++
++ unsigned int rx_ps_pages;
++ u16 rx_ps_bsize0;
++
++ /* OS defined structs */
++ struct net_device *netdev;
++ struct pci_dev *pdev;
++ struct net_device_stats net_stats;
++ spinlock_t stats_lock; /* prevent concurrent stats updates */
++
++ /* structs defined in e1000_hw.h */
++ struct e1000_hw hw;
++
++ struct e1000_hw_stats stats;
++ struct e1000_phy_info phy_info;
++ struct e1000_phy_stats phy_stats;
++
++ struct e1000_ring test_tx_ring;
++ struct e1000_ring test_rx_ring;
++ u32 test_icr;
++
++ u32 msg_enable;
++
++ u32 eeprom_wol;
++ u32 wol;
++ u32 pba;
++
++ u8 fc_autoneg;
++
++ unsigned long led_status;
++
++ unsigned int flags;
++};
++
++struct e1000_info {
++ enum e1000_mac_type mac;
++ unsigned int flags;
++ u32 pba;
++ s32 (*get_invariants)(struct e1000_adapter *);
++ struct e1000_mac_operations *mac_ops;
++ struct e1000_phy_operations *phy_ops;
++ struct e1000_nvm_operations *nvm_ops;
++};
++
++/* hardware capability, feature, and workaround flags */
++#define FLAG_HAS_AMT (1 << 0)
++#define FLAG_HAS_FLASH (1 << 1)
++#define FLAG_HAS_HW_VLAN_FILTER (1 << 2)
++#define FLAG_HAS_WOL (1 << 3)
++#define FLAG_HAS_ERT (1 << 4)
++#define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5)
++#define FLAG_HAS_SWSM_ON_LOAD (1 << 6)
++#define FLAG_HAS_JUMBO_FRAMES (1 << 7)
++#define FLAG_HAS_ASPM (1 << 8)
++#define FLAG_HAS_STATS_ICR_ICT (1 << 9)
++#define FLAG_HAS_STATS_PTC_PRC (1 << 10)
++#define FLAG_HAS_SMART_POWER_DOWN (1 << 11)
++#define FLAG_IS_QUAD_PORT_A (1 << 12)
++#define FLAG_IS_QUAD_PORT (1 << 13)
++#define FLAG_TIPG_MEDIUM_FOR_80003ESLAN (1 << 14)
++#define FLAG_APME_IN_WUC (1 << 15)
++#define FLAG_APME_IN_CTRL3 (1 << 16)
++#define FLAG_APME_CHECK_PORT_B (1 << 17)
++#define FLAG_DISABLE_FC_PAUSE_TIME (1 << 18)
++#define FLAG_NO_WAKE_UCAST (1 << 19)
++#define FLAG_MNG_PT_ENABLED (1 << 20)
++#define FLAG_RESET_OVERWRITES_LAA (1 << 21)
++#define FLAG_TARC_SPEED_MODE_BIT (1 << 22)
++#define FLAG_TARC_SET_BIT_ZERO (1 << 23)
++#define FLAG_RX_NEEDS_RESTART (1 << 24)
++#define FLAG_LSC_GIG_SPEED_DROP (1 << 25)
++#define FLAG_SMART_POWER_DOWN (1 << 26)
++#define FLAG_MSI_ENABLED (1 << 27)
++#define FLAG_RX_CSUM_ENABLED (1 << 28)
++#define FLAG_TSO_FORCE (1 << 29)
++
++#define E1000_RX_DESC_PS(R, i) \
++ (&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
++#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
++#define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc)
++#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
++#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc)
++
++enum e1000_state_t {
++ __E1000_TESTING,
++ __E1000_RESETTING,
++ __E1000_DOWN
++};
++
++enum latency_range {
++ lowest_latency = 0,
++ low_latency = 1,
++ bulk_latency = 2,
++ latency_invalid = 255
++};
++
++extern char e1000_driver_name[];
++extern const char e1000_driver_version[];
++
++extern void e1000_check_options(struct e1000_adapter *adapter);
++extern void e1000_set_ethtool_ops(struct net_device *netdev);
++
++extern int e1000_up(struct e1000_adapter *adapter);
++extern void e1000_down(struct e1000_adapter *adapter);
++extern void e1000_reinit_locked(struct e1000_adapter *adapter);
++extern void e1000_reset(struct e1000_adapter *adapter);
++extern void e1000_power_up_phy(struct e1000_adapter *adapter);
++extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
++extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
++extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
++extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
++extern void e1000_update_stats(struct e1000_adapter *adapter);
++
++extern unsigned int copybreak;
++
++extern char *e1000_get_hw_dev_name(struct e1000_hw *hw);
++
++extern struct e1000_info e1000_82571_info;
++extern struct e1000_info e1000_82572_info;
++extern struct e1000_info e1000_82573_info;
++extern struct e1000_info e1000_ich8_info;
++extern struct e1000_info e1000_ich9_info;
++extern struct e1000_info e1000_es2_info;
++
++extern s32 e1000_commit_phy(struct e1000_hw *hw);
++extern s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
++
++extern bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
++
++extern bool e1000_get_laa_state_82571(struct e1000_hw *hw);
++extern void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state);
++
++extern void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
++ bool state);
++extern void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
++extern void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
++
++extern s32 e1000_check_for_copper_link(struct e1000_hw *hw);
++extern s32 e1000_check_for_fiber_link(struct e1000_hw *hw);
++extern s32 e1000_check_for_serdes_link(struct e1000_hw *hw);
++extern s32 e1000_cleanup_led_generic(struct e1000_hw *hw);
++extern s32 e1000_led_on_generic(struct e1000_hw *hw);
++extern s32 e1000_led_off_generic(struct e1000_hw *hw);
++extern s32 e1000_get_bus_info_pcie(struct e1000_hw *hw);
++extern s32 e1000_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex);
++extern s32 e1000_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex);
++extern s32 e1000_disable_pcie_master(struct e1000_hw *hw);
++extern s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
++extern s32 e1000_id_led_init(struct e1000_hw *hw);
++extern void e1000_clear_hw_cntrs_base(struct e1000_hw *hw);
++extern s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
++extern s32 e1000_copper_link_setup_m88(struct e1000_hw *hw);
++extern s32 e1000_copper_link_setup_igp(struct e1000_hw *hw);
++extern s32 e1000_setup_link(struct e1000_hw *hw);
++extern void e1000_clear_vfta(struct e1000_hw *hw);
++extern void e1000_init_rx_addrs(struct e1000_hw *hw, u16 rar_count);
++extern void e1000_mc_addr_list_update_generic(struct e1000_hw *hw,
++ u8 *mc_addr_list, u32 mc_addr_count,
++ u32 rar_used_count, u32 rar_count);
++extern void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
++extern s32 e1000_set_fc_watermarks(struct e1000_hw *hw);
++extern void e1000_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop);
++extern s32 e1000_get_hw_semaphore(struct e1000_hw *hw);
++extern s32 e1000_valid_led_default(struct e1000_hw *hw, u16 *data);
++extern void e1000_config_collision_dist(struct e1000_hw *hw);
++extern s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
++extern s32 e1000_force_mac_fc(struct e1000_hw *hw);
++extern s32 e1000_blink_led(struct e1000_hw *hw);
++extern void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
++extern void e1000_reset_adaptive(struct e1000_hw *hw);
++extern void e1000_update_adaptive(struct e1000_hw *hw);
++
++extern s32 e1000_setup_copper_link(struct e1000_hw *hw);
++extern s32 e1000_get_phy_id(struct e1000_hw *hw);
++extern void e1000_put_hw_semaphore(struct e1000_hw *hw);
++extern s32 e1000_check_reset_block_generic(struct e1000_hw *hw);
++extern s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
++extern s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw);
++extern s32 e1000_get_phy_info_igp(struct e1000_hw *hw);
++extern s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
++extern s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw);
++extern s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
++extern s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
++extern s32 e1000_phy_sw_reset(struct e1000_hw *hw);
++extern s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
++extern s32 e1000_get_cfg_done(struct e1000_hw *hw);
++extern s32 e1000_get_cable_length_m88(struct e1000_hw *hw);
++extern s32 e1000_get_phy_info_m88(struct e1000_hw *hw);
++extern s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
++extern s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
++extern enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
++extern void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
++extern s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
++extern s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
++extern s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
++ u32 usec_interval, bool *success);
++extern s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
++extern s32 e1000_check_downshift(struct e1000_hw *hw);
++extern s32 e1000_wait_autoneg(struct e1000_hw *hw);
++
++static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
++{
++ return hw->phy.ops.reset_phy(hw);
++}
++
++static inline s32 e1000_check_reset_block(struct e1000_hw *hw)
++{
++ return hw->phy.ops.check_reset_block(hw);
++}
++
++static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
++{
++ return hw->phy.ops.read_phy_reg(hw, offset, data);
++}
++
++static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
++{
++ return hw->phy.ops.write_phy_reg(hw, offset, data);
++}
++
++static inline s32 e1000_get_cable_length(struct e1000_hw *hw)
++{
++ return hw->phy.ops.get_cable_length(hw);
++}
++
++extern s32 e1000_acquire_nvm(struct e1000_hw *hw);
++extern s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
++extern s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
++extern s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
++extern s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
++extern s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
++extern s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
++extern void e1000_release_nvm(struct e1000_hw *hw);
++extern void e1000_reload_nvm(struct e1000_hw *hw);
++extern s32 e1000_read_mac_addr(struct e1000_hw *hw);
++
++static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
++{
++ return hw->nvm.ops.validate_nvm(hw);
++}
++
++static inline s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
++{
++ return hw->nvm.ops.update_nvm(hw);
++}
++
++static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
++{
++ return hw->nvm.ops.read_nvm(hw, offset, words, data);
++}
++
++static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
++{
++ return hw->nvm.ops.write_nvm(hw, offset, words, data);
++}
++
++static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
++{
++ return hw->phy.ops.get_phy_info(hw);
++}
++
++extern bool e1000_check_mng_mode(struct e1000_hw *hw);
++extern bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
++extern s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
++
++static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
++{
++ return readl(hw->hw_addr + reg);
++}
++
++static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
++{
++ writel(val, hw->hw_addr + reg);
++}
++
++#endif /* _E1000_H_ */
+diff --git a/drivers/net/e1000e/es2lan.c b/drivers/net/e1000e/es2lan.c
+new file mode 100644
+index 0000000..b5143e9
+--- /dev/null
++++ b/drivers/net/e1000e/es2lan.c
+@@ -0,0 +1,1255 @@
++/*******************************************************************************
++
++ Intel PRO/1000 Linux driver
++ Copyright(c) 1999 - 2007 Intel Corporation.
++
++ This program is free software; you can redistribute it and/or modify it
++ under the terms and conditions of the GNU General Public License,
++ version 2, as published by the Free Software Foundation.
++
++ This program is distributed in the hope it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
++ more details.
++
++ You should have received a copy of the GNU General Public License along with
++ this program; if not, write to the Free Software Foundation, Inc.,
++ 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++ The full GNU General Public License is included in this distribution in
++ the file called "COPYING".
++
++ Contact Information:
++ Linux NICS <linux.nics@intel.com>
++ e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
++ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++/*
++ * 80003ES2LAN Gigabit Ethernet Controller (Copper)
++ * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
++ */
++
++#include "e1000.h"
++
++#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
++#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
++#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
++
++#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
++#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
++#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
++
++#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
++#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
++
++#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
++#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
++
++#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
++#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
++
++/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
++#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
++#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
++#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
++#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
++#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
++
++/* PHY Specific Control Register 2 (Page 0, Register 26) */
++#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
++ /* 1=Reverse Auto-Negotiation */
++
++/* MAC Specific Control Register (Page 2, Register 21) */
++/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
++#define GG82563_MSCR_TX_CLK_MASK 0x0007
++#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
++#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
++#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
++
++#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
++
++/* DSP Distance Register (Page 5, Register 26) */
++#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
++ 1 = 50-80M
++ 2 = 80-110M
++ 3 = 110-140M
++ 4 = >140M */
++
++/* Kumeran Mode Control Register (Page 193, Register 16) */
++#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
++
++/* Power Management Control Register (Page 193, Register 20) */
++#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
++ /* 1=Enable SERDES Electrical Idle */
++
++/* In-Band Control Register (Page 194, Register 18) */
++#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
++
++/* A table for the GG82563 cable length where the range is defined
++ * with a lower bound at "index" and the upper bound at
++ * "index + 5".
++ */
++static const u16 e1000_gg82563_cable_length_table[] =
++ { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
++
++static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
++static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
++static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
++static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
++static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
++static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
++static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
++
++/**
++ * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
++ * @hw: pointer to the HW structure
++ *
++ * This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val = E1000_SUCCESS;
++
++ if (hw->media_type != e1000_media_type_copper) {
++ phy->type = e1000_phy_none;
++ goto out;
++ }
++
++ phy->addr = 1;
++ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
++ phy->reset_delay_us = 100;
++ phy->type = e1000_phy_gg82563;
++
++ /* This can only be done after all function pointers are setup. */
++ ret_val = e1000_get_phy_id(hw);
++
++ /* Verify phy id */
++ if (phy->id != GG82563_E_PHY_ID) {
++ ret_val = -E1000_ERR_PHY;
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
++ * @hw: pointer to the HW structure
++ *
++ * This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ u32 eecd = er32(EECD);
++ u16 size;
++
++ nvm->opcode_bits = 8;
++ nvm->delay_usec = 1;
++ switch (nvm->override) {
++ case e1000_nvm_override_spi_large:
++ nvm->page_size = 32;
++ nvm->address_bits = 16;
++ break;
++ case e1000_nvm_override_spi_small:
++ nvm->page_size = 8;
++ nvm->address_bits = 8;
++ break;
++ default:
++ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
++ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
++ break;
++ }
++
++ nvm->type = e1000_nvm_eeprom_spi;
++
++ size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
++ E1000_EECD_SIZE_EX_SHIFT);
++
++ /* Added to a constant, "size" becomes the left-shift value
++ * for setting word_size.
++ */
++ size += NVM_WORD_SIZE_BASE_SHIFT;
++ nvm->word_size = 1 << size;
++
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
++ * @hw: pointer to the HW structure
++ *
++ * This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ struct e1000_mac_info *mac = &hw->mac;
++ struct e1000_mac_operations *func = &mac->ops;
++ s32 ret_val = E1000_SUCCESS;
++
++ /* Set media type */
++ switch (adapter->pdev->device) {
++ case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
++ hw->media_type = e1000_media_type_internal_serdes;
++ break;
++ default:
++ hw->media_type = e1000_media_type_copper;
++ break;
++ }
++
++ /* Set mta register count */
++ mac->mta_reg_count = 128;
++ /* Set rar entry count */
++ mac->rar_entry_count = E1000_RAR_ENTRIES;
++ /* Set if manageability features are enabled. */
++ mac->arc_subsystem_valid =
++ (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
++
++ /* check for link */
++ switch (hw->media_type) {
++ case e1000_media_type_copper:
++ func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
++ func->check_for_link = e1000_check_for_copper_link;
++ break;
++ case e1000_media_type_fiber:
++ func->setup_physical_interface = e1000_setup_fiber_serdes_link;
++ func->check_for_link = e1000_check_for_fiber_link;
++ break;
++ case e1000_media_type_internal_serdes:
++ func->setup_physical_interface = e1000_setup_fiber_serdes_link;
++ func->check_for_link = e1000_check_for_serdes_link;
++ break;
++ default:
++ ret_val = -E1000_ERR_CONFIG;
++ goto out;
++ break;
++ }
++
++out:
++ return ret_val;
++}
++
++static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ s32 rc;
++
++ rc = e1000_init_mac_params_80003es2lan(adapter);
++ if (rc)
++ return rc;
++
++ rc = e1000_init_nvm_params_80003es2lan(hw);
++ if (rc)
++ return rc;
++
++ rc = e1000_init_phy_params_80003es2lan(hw);
++ if (rc)
++ return rc;
++
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
++ * @hw: pointer to the HW structure
++ *
++ * A wrapper to acquire access rights to the correct PHY. This is a
++ * function pointer entry point called by the api module.
++ **/
++static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
++{
++ u16 mask;
++
++ mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
++
++ return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
++}
++
++/**
++ * e1000_release_phy_80003es2lan - Release rights to access PHY
++ * @hw: pointer to the HW structure
++ *
++ * A wrapper to release access rights to the correct PHY. This is a
++ * function pointer entry point called by the api module.
++ **/
++static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
++{
++ u16 mask;
++
++ mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
++ e1000_release_swfw_sync_80003es2lan(hw, mask);
++}
++
++/**
++ * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
++ * @hw: pointer to the HW structure
++ *
++ * Acquire the semaphore to access the EEPROM. This is a function
++ * pointer entry point called by the api module.
++ **/
++static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
++{
++ s32 ret_val;
++
++ ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
++ if (ret_val)
++ goto out;
++
++ ret_val = e1000_acquire_nvm(hw);
++
++ if (ret_val)
++ e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
++ * @hw: pointer to the HW structure
++ *
++ * Release the semaphore used to access the EEPROM. This is a
++ * function pointer entry point called by the api module.
++ **/
++static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
++{
++ e1000_release_nvm(hw);
++ e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
++}
++
++/**
++ * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
++ * @hw: pointer to the HW structure
++ * @mask: specifies which semaphore to acquire
++ *
++ * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
++ * will also specify which port we're acquiring the lock for.
++ **/
++static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
++{
++ u32 swfw_sync;
++ u32 swmask = mask;
++ u32 fwmask = mask << 16;
++ s32 ret_val = E1000_SUCCESS;
++ s32 i = 0;
++ s32 timeout = 200;
++
++ while (i < timeout) {
++ if (e1000_get_hw_semaphore(hw)) {
++ ret_val = -E1000_ERR_SWFW_SYNC;
++ goto out;
++ }
++
++ swfw_sync = er32(SW_FW_SYNC);
++ if (!(swfw_sync & (fwmask | swmask)))
++ break;
++
++ /* Firmware currently using resource (fwmask)
++ * or other software thread using resource (swmask) */
++ e1000_put_hw_semaphore(hw);
++ mdelay(5);
++ i++;
++ }
++
++ if (i == timeout) {
++ hw_dbg(hw,
++ "Driver can't access resource, SW_FW_SYNC timeout.\n");
++ ret_val = -E1000_ERR_SWFW_SYNC;
++ goto out;
++ }
++
++ swfw_sync |= swmask;
++ ew32(SW_FW_SYNC, swfw_sync);
++
++ e1000_put_hw_semaphore(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
++ * @hw: pointer to the HW structure
++ * @mask: specifies which semaphore to acquire
++ *
++ * Release the SW/FW semaphore used to access the PHY or NVM. The mask
++ * will also specify which port we're releasing the lock for.
++ **/
++static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
++{
++ u32 swfw_sync;
++
++ while (e1000_get_hw_semaphore(hw) != E1000_SUCCESS);
++ /* Empty */
++
++ swfw_sync = er32(SW_FW_SYNC);
++ swfw_sync &= ~mask;
++ ew32(SW_FW_SYNC, swfw_sync);
++
++ e1000_put_hw_semaphore(hw);
++}
++
++/**
++ * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
++ * @hw: pointer to the HW structure
++ * @offset: offset of the register to read
++ * @data: pointer to the data returned from the operation
++ *
++ * Read the GG82563 PHY register. This is a function pointer entry
++ * point called by the api module.
++ **/
++static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
++ u32 offset, u16 *data)
++{
++ s32 ret_val;
++ u32 page_select;
++ u16 temp;
++
++ /* Select Configuration Page */
++ if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
++ page_select = GG82563_PHY_PAGE_SELECT;
++ else
++ /* Use Alternative Page Select register to access
++ * registers 30 and 31
++ */
++ page_select = GG82563_PHY_PAGE_SELECT_ALT;
++
++ temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
++ ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
++ if (ret_val)
++ goto out;
++
++ /* The "ready" bit in the MDIC register may be incorrectly set
++ * before the device has completed the "Page Select" MDI
++ * transaction. So we wait 200us after each MDI command...
++ */
++ udelay(200);
++
++ /* ...and verify the command was successful. */
++ ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);
++
++ if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
++ ret_val = -E1000_ERR_PHY;
++ goto out;
++ }
++
++ udelay(200);
++
++ ret_val = e1000_read_phy_reg_m88(hw,
++ MAX_PHY_REG_ADDRESS & offset,
++ data);
++
++ udelay(200);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
++ * @hw: pointer to the HW structure
++ * @offset: offset of the register to read
++ * @data: value to write to the register
++ *
++ * Write to the GG82563 PHY register. This is a function pointer entry
++ * point called by the api module.
++ **/
++static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
++ u32 offset, u16 data)
++{
++ s32 ret_val;
++ u32 page_select;
++ u16 temp;
++
++ /* Select Configuration Page */
++ if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
++ page_select = GG82563_PHY_PAGE_SELECT;
++ else
++ /* Use Alternative Page Select register to access
++ * registers 30 and 31
++ */
++ page_select = GG82563_PHY_PAGE_SELECT_ALT;
++
++ temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
++ ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
++ if (ret_val)
++ goto out;
++
++
++ /* The "ready" bit in the MDIC register may be incorrectly set
++ * before the device has completed the "Page Select" MDI
++ * transaction. So we wait 200us after each MDI command...
++ */
++ udelay(200);
++
++ /* ...and verify the command was successful. */
++ ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);
++
++ if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
++ ret_val = -E1000_ERR_PHY;
++ goto out;
++ }
++
++ udelay(200);
++
++ ret_val = e1000_write_phy_reg_m88(hw,
++ MAX_PHY_REG_ADDRESS & offset,
++ data);
++
++ udelay(200);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
++ * @hw: pointer to the HW structure
++ * @offset: offset of the register to read
++ * @words: number of words to write
++ * @data: buffer of data to write to the NVM
++ *
++ * Write "words" of data to the ESB2 NVM. This is a function
++ * pointer entry point called by the api module.
++ **/
++static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
++ u16 words, u16 *data)
++{
++ return e1000_write_nvm_spi(hw, offset, words, data);
++}
++
++/**
++ * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
++ * @hw: pointer to the HW structure
++ *
++ * Wait a specific amount of time for manageability processes to complete.
++ * This is a function pointer entry point called by the phy module.
++ **/
++static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
++{
++ s32 timeout = PHY_CFG_TIMEOUT;
++ s32 ret_val = E1000_SUCCESS;
++ u32 mask = E1000_NVM_CFG_DONE_PORT_0;
++
++ if (hw->bus.func == 1)
++ mask = E1000_NVM_CFG_DONE_PORT_1;
++
++ while (timeout) {
++ if (er32(EEMNGCTL) & mask)
++ break;
++ msleep(1);
++ timeout--;
++ }
++ if (!timeout) {
++ hw_dbg(hw, "MNG configuration cycle has not completed.\n");
++ ret_val = -E1000_ERR_RESET;
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
++ * @hw: pointer to the HW structure
++ *
++ * Force the speed and duplex settings onto the PHY. This is a
++ * function pointer entry point called by the phy module.
++ **/
++static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
++{
++ s32 ret_val;
++ u16 phy_data;
++ bool link;
++
++ /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
++ * forced whenever speed and duplex are forced.
++ */
++ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
++ if (ret_val)
++ goto out;
++
++ phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
++ ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
++ if (ret_val)
++ goto out;
++
++ hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
++
++ ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
++ if (ret_val)
++ goto out;
++
++ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
++
++ /* Reset the phy to commit changes. */
++ phy_data |= MII_CR_RESET;
++
++ ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
++ if (ret_val)
++ goto out;
++
++ udelay(1);
++
++ if (hw->phy.wait_for_link) {
++ hw_dbg(hw, "Waiting for forced speed/duplex link "
++ "on GG82563 phy.\n");
++
++ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
++ 100000, &link);
++ if (ret_val)
++ goto out;
++
++ if (!link) {
++ /* We didn't get link.
++ * Reset the DSP and cross our fingers.
++ */
++ ret_val = e1000_phy_reset_dsp(hw);
++ if (ret_val)
++ goto out;
++ }
++
++ /* Try once more */
++ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
++ 100000, &link);
++ if (ret_val)
++ goto out;
++ }
++
++ ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
++ if (ret_val)
++ goto out;
++
++ /* Resetting the phy means we need to verify the TX_CLK corresponds
++ * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
++ */
++ phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
++ if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
++ phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
++ else
++ phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
++
++ /* In addition, we must re-enable CRS on Tx for both half and full
++ * duplex.
++ */
++ phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
++ ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_get_cable_length_80003es2lan - Set approximate cable length
++ * @hw: pointer to the HW structure
++ *
++ * Find the approximate cable length as measured by the GG82563 PHY.
++ * This is a function pointer entry point called by the phy module.
++ **/
++static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 phy_data;
++ u16 index;
++
++ ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
++ if (ret_val)
++ goto out;
++
++ index = phy_data & GG82563_DSPD_CABLE_LENGTH;
++ phy->min_cable_length = e1000_gg82563_cable_length_table[index];
++ phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
++
++ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_get_link_up_info_80003es2lan - Report speed and duplex
++ * @hw: pointer to the HW structure
++ * @speed: pointer to speed buffer
++ * @duplex: pointer to duplex buffer
++ *
++ * Retrieve the current speed and duplex configuration.
++ * This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
++ u16 *duplex)
++{
++ s32 ret_val;
++
++ if (hw->media_type == e1000_media_type_copper) {
++ ret_val = e1000_get_speed_and_duplex_copper(hw,
++ speed,
++ duplex);
++ if (ret_val)
++ goto out;
++ if (*speed == SPEED_1000)
++ ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
++ else
++ ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
++ *duplex);
++ } else {
++ ret_val = e1000_get_speed_and_duplex_fiber_serdes(hw,
++ speed,
++ duplex);
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
++ * @hw: pointer to the HW structure
++ *
++ * Perform a global reset to the ESB2 controller.
++ * This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
++{
++ u32 ctrl;
++ u32 icr;
++ s32 ret_val;
++
++ /* Prevent the PCI-E bus from sticking if there is no TLP connection
++ * on the last TLP read/write transaction when MAC is reset.
++ */
++ ret_val = e1000_disable_pcie_master(hw);
++ if (ret_val)
++ hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
++
++ hw_dbg(hw, "Masking off all interrupts\n");
++ ew32(IMC, 0xffffffff);
++
++ ew32(RCTL, 0);
++ ew32(TCTL, E1000_TCTL_PSP);
++ e1e_flush();
++
++ msleep(10);
++
++ ctrl = er32(CTRL);
++
++ hw_dbg(hw, "Issuing a global reset to MAC\n");
++ ew32(CTRL, ctrl | E1000_CTRL_RST);
++
++ ret_val = e1000_get_auto_rd_done(hw);
++ if (ret_val)
++ /* We don't want to continue accessing MAC registers. */
++ goto out;
++
++ /* Clear any pending interrupt events. */
++ ew32(IMC, 0xffffffff);
++ icr = er32(ICR);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
++ * @hw: pointer to the HW structure
++ *
++ * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
++ * This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ u32 reg_data;
++ s32 ret_val;
++ u16 i;
++
++ e1000_initialize_hw_bits_80003es2lan(hw);
++
++ /* Initialize identification LED */
++ ret_val = e1000_id_led_init(hw);
++ if (ret_val) {
++ hw_dbg(hw, "Error initializing identification LED\n");
++ goto out;
++ }
++
++ /* Disabling VLAN filtering */
++ hw_dbg(hw, "Initializing the IEEE VLAN\n");
++ e1000_clear_vfta(hw);
++
++ /* Setup the receive address. */
++ e1000_init_rx_addrs(hw, mac->rar_entry_count);
++
++ /* Zero out the Multicast HASH table */
++ hw_dbg(hw, "Zeroing the MTA\n");
++ for (i = 0; i < mac->mta_reg_count; i++)
++ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
++
++ /* Setup link and flow control */
++ ret_val = e1000_setup_link(hw);
++
++ /* Set the transmit descriptor write-back policy */
++ reg_data = er32(TXDCTL);
++ reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
++ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
++ ew32(TXDCTL, reg_data);
++
++ /* ...for both queues. */
++ reg_data = er32(TXDCTL1);
++ reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
++ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
++ ew32(TXDCTL1, reg_data);
++
++ /* Enable retransmit on late collisions */
++ reg_data = er32(TCTL);
++ reg_data |= E1000_TCTL_RTLC;
++ ew32(TCTL, reg_data);
++
++ /* Configure Gigabit Carry Extend Padding */
++ reg_data = er32(TCTL_EXT);
++ reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
++ reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
++ ew32(TCTL_EXT, reg_data);
++
++ /* Configure Transmit Inter-Packet Gap */
++ reg_data = er32(TIPG);
++ reg_data &= ~E1000_TIPG_IPGT_MASK;
++ reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
++ ew32(TIPG, reg_data);
++
++ reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
++ reg_data &= ~0x00100000;
++ E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
++
++ /* Clear all of the statistics registers (clear on read). It is
++ * important that we do this after we have tried to establish link
++ * because the symbol error count will increment wildly if there
++ * is no link.
++ */
++ e1000_clear_hw_cntrs_80003es2lan(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
++ * @hw: pointer to the HW structure
++ *
++ * Initializes required hardware-dependent bits needed for normal operation.
++ **/
++static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
++{
++ u32 reg;
++
++ /* Transmit Descriptor Control 0 */
++ reg = er32(TXDCTL);
++ reg |= (1 << 22);
++ ew32(TXDCTL, reg);
++
++ /* Transmit Descriptor Control 1 */
++ reg = er32(TXDCTL1);
++ reg |= (1 << 22);
++ ew32(TXDCTL1, reg);
++
++ /* Transmit Arbitration Control 0 */
++ reg = er32(TARC0);
++ reg &= ~(0xF << 27); /* 30:27 */
++ if (hw->media_type != e1000_media_type_copper)
++ reg &= ~(1 << 20);
++ ew32(TARC0, reg);
++
++ /* Transmit Arbitration Control 1 */
++ reg = er32(TARC1);
++ if (er32(TCTL) & E1000_TCTL_MULR)
++ reg &= ~(1 << 28);
++ else
++ reg |= (1 << 28);
++ ew32(TARC1, reg);
++}
++
++/**
++ * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
++ * @hw: pointer to the HW structure
++ *
++ * Setup some GG82563 PHY registers for obtaining link
++ **/
++static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u32 ctrl_ext;
++ u16 data;
++
++ ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
++ &data);
++ if (ret_val)
++ goto out;
++
++ data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
++ /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
++ data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
++
++ ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
++ data);
++ if (ret_val)
++ goto out;
++
++ /* Options:
++ * MDI/MDI-X = 0 (default)
++ * 0 - Auto for all speeds
++ * 1 - MDI mode
++ * 2 - MDI-X mode
++ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
++ */
++ ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
++ if (ret_val)
++ goto out;
++
++ data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
++
++ switch (phy->mdix) {
++ case 1:
++ data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
++ break;
++ case 2:
++ data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
++ break;
++ case 0:
++ default:
++ data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
++ break;
++ }
++
++ /* Options:
++ * disable_polarity_correction = 0 (default)
++ * Automatic Correction for Reversed Cable Polarity
++ * 0 - Disabled
++ * 1 - Enabled
++ */
++ data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
++ if (phy->disable_polarity_correction)
++ data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
++
++ ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
++ if (ret_val)
++ goto out;
++
++ /* SW Reset the PHY so all changes take effect */
++ ret_val = e1000_commit_phy(hw);
++ if (ret_val) {
++ hw_dbg(hw, "Error Resetting the PHY\n");
++ goto out;
++ }
++
++ /* Bypass RX and TX FIFO's */
++ ret_val = e1000_write_kmrn_reg(hw,
++ E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
++ E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
++ E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
++ if (ret_val)
++ goto out;
++
++ ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
++ if (ret_val)
++ goto out;
++
++ data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
++ ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
++ if (ret_val)
++ goto out;
++
++ ctrl_ext = er32(CTRL_EXT);
++ ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
++ ew32(CTRL_EXT, ctrl_ext);
++
++ ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
++ if (ret_val)
++ goto out;
++
++ /* Do not init these registers when the HW is in IAMT mode, since the
++ * firmware will have already initialized them. We only initialize
++ * them if the HW is not in IAMT mode.
++ */
++ if (!e1000_check_mng_mode(hw)) {
++ /* Enable Electrical Idle on the PHY */
++ data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
++ ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
++ if (ret_val)
++ goto out;
++
++ ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
++ if (ret_val)
++ goto out;
++
++ data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
++ ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
++ if (ret_val)
++ goto out;
++ }
++
++ /* Workaround: Disable padding in Kumeran interface in the MAC
++ * and in the PHY to avoid CRC errors.
++ */
++ ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
++ if (ret_val)
++ goto out;
++
++ data |= GG82563_ICR_DIS_PADDING;
++ ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
++ if (ret_val)
++ goto out;
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
++ * @hw: pointer to the HW structure
++ *
++ * Essentially a wrapper for setting up all things "copper" related.
++ * This is a function pointer entry point called by the mac module.
++ **/
++static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
++{
++ u32 ctrl;
++ s32 ret_val;
++ u16 reg_data;
++
++ ctrl = er32(CTRL);
++ ctrl |= E1000_CTRL_SLU;
++ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
++ ew32(CTRL, ctrl);
++
++ /* Set the mac to wait the maximum time between each
++ * iteration and increase the max iterations when
++ * polling the phy; this fixes erroneous timeouts at 10Mbps. */
++ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
++ if (ret_val)
++ goto out;
++ ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
++ if (ret_val)
++ goto out;
++ reg_data |= 0x3F;
++ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
++ if (ret_val)
++ goto out;
++ ret_val = e1000_read_kmrn_reg(hw,
++ E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
++ &reg_data);
++ if (ret_val)
++ goto out;
++ reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
++ ret_val = e1000_write_kmrn_reg(hw,
++ E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
++ reg_data);
++ if (ret_val)
++ goto out;
++
++ ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
++ if (ret_val)
++ goto out;
++
++ ret_val = e1000_setup_copper_link(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
++ * @hw: pointer to the HW structure
++ * @duplex: current duplex setting
++ *
++ * Configure the KMRN interface by applying last minute quirks for
++ * 10/100 operation.
++ **/
++static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
++{
++ s32 ret_val = E1000_SUCCESS;
++ u32 tipg;
++ u16 reg_data;
++
++ reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
++ ret_val = e1000_write_kmrn_reg(hw,
++ E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
++ reg_data);
++ if (ret_val)
++ goto out;
++
++ /* Configure Transmit Inter-Packet Gap */
++ tipg = er32(TIPG);
++ tipg &= ~E1000_TIPG_IPGT_MASK;
++ tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
++ ew32(TIPG, tipg);
++
++ ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
++ if (ret_val)
++ goto out;
++
++ if (duplex == HALF_DUPLEX)
++ reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
++ else
++ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
++
++ ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
++ * @hw: pointer to the HW structure
++ *
++ * Configure the KMRN interface by applying last minute quirks for
++ * gigabit operation.
++ **/
++static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
++{
++ s32 ret_val = E1000_SUCCESS;
++ u16 reg_data;
++ u32 tipg;
++
++ reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
++ ret_val = e1000_write_kmrn_reg(hw,
++ E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
++ reg_data);
++ if (ret_val)
++ goto out;
++
++ /* Configure Transmit Inter-Packet Gap */
++ tipg = er32(TIPG);
++ tipg &= ~E1000_TIPG_IPGT_MASK;
++ tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
++ ew32(TIPG, tipg);
++
++ ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
++ if (ret_val)
++ goto out;
++
++ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
++ ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
++ * @hw: pointer to the HW structure
++ *
++ * Clears the hardware counters by reading the counter registers.
++ **/
++static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
++{
++ u32 temp;
++
++ e1000_clear_hw_cntrs_base(hw);
++
++ temp = er32(PRC64);
++ temp = er32(PRC127);
++ temp = er32(PRC255);
++ temp = er32(PRC511);
++ temp = er32(PRC1023);
++ temp = er32(PRC1522);
++ temp = er32(PTC64);
++ temp = er32(PTC127);
++ temp = er32(PTC255);
++ temp = er32(PTC511);
++ temp = er32(PTC1023);
++ temp = er32(PTC1522);
++
++ temp = er32(ALGNERRC);
++ temp = er32(RXERRC);
++ temp = er32(TNCRS);
++ temp = er32(CEXTERR);
++ temp = er32(TSCTC);
++ temp = er32(TSCTFC);
++
++ temp = er32(MGTPRC);
++ temp = er32(MGTPDC);
++ temp = er32(MGTPTC);
++
++ temp = er32(IAC);
++ temp = er32(ICRXOC);
++
++ temp = er32(ICRXPTC);
++ temp = er32(ICRXATC);
++ temp = er32(ICTXPTC);
++ temp = er32(ICTXATC);
++ temp = er32(ICTXQEC);
++ temp = er32(ICTXQMTC);
++ temp = er32(ICRXDMTC);
++}
++
++static struct e1000_mac_operations es2_mac_ops = {
++ .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
++ /* check_for_link dependent on media type */
++ .cleanup_led = e1000_cleanup_led_generic,
++ .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
++ .get_bus_info = e1000_get_bus_info_pcie,
++ .get_link_up_info = e1000_get_link_up_info_80003es2lan,
++ .led_on = e1000_led_on_generic,
++ .led_off = e1000_led_off_generic,
++ .mc_addr_list_update = e1000_mc_addr_list_update_generic,
++ .reset_hw = e1000_reset_hw_80003es2lan,
++ .init_hw = e1000_init_hw_80003es2lan,
++ .setup_link = e1000_setup_link,
++ /* setup_physical_interface dependent on media type */
++};
++
++static struct e1000_phy_operations es2_phy_ops = {
++ .acquire_phy = e1000_acquire_phy_80003es2lan,
++ .check_reset_block = e1000_check_reset_block_generic,
++ .commit_phy = e1000_phy_sw_reset,
++ .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
++ .get_cfg_done = e1000_get_cfg_done_80003es2lan,
++ .get_cable_length = e1000_get_cable_length_80003es2lan,
++ .get_phy_info = e1000_get_phy_info_m88,
++ .read_phy_reg = e1000_read_phy_reg_gg82563_80003es2lan,
++ .release_phy = e1000_release_phy_80003es2lan,
++ .reset_phy = e1000_phy_hw_reset_generic,
++ .set_d0_lplu_state = NULL,
++ .set_d3_lplu_state = e1000_set_d3_lplu_state,
++ .write_phy_reg = e1000_write_phy_reg_gg82563_80003es2lan,
++};
++
++static struct e1000_nvm_operations es2_nvm_ops = {
++ .acquire_nvm = e1000_acquire_nvm_80003es2lan,
++ .read_nvm = e1000_read_nvm_eerd,
++ .release_nvm = e1000_release_nvm_80003es2lan,
++ .update_nvm = e1000_update_nvm_checksum_generic,
++ .valid_led_default = e1000_valid_led_default,
++ .validate_nvm = e1000_validate_nvm_checksum_generic,
++ .write_nvm = e1000_write_nvm_80003es2lan,
++};
++
++struct e1000_info e1000_es2_info = {
++ .mac = e1000_80003es2lan,
++ .flags = FLAG_HAS_HW_VLAN_FILTER
++ | FLAG_HAS_JUMBO_FRAMES
++ | FLAG_HAS_STATS_PTC_PRC
++ | FLAG_HAS_WOL
++ | FLAG_APME_IN_CTRL3
++ | FLAG_RX_CSUM_ENABLED
++ | FLAG_HAS_CTRLEXT_ON_LOAD
++ | FLAG_HAS_STATS_ICR_ICT
++ | FLAG_RX_NEEDS_RESTART /* errata */
++ | FLAG_TARC_SET_BIT_ZERO /* errata */
++ | FLAG_APME_CHECK_PORT_B
++ | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
++ | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
++ .pba = 38,
++ .get_invariants = e1000_get_invariants_80003es2lan,
++ .mac_ops = &es2_mac_ops,
++ .phy_ops = &es2_phy_ops,
++ .nvm_ops = &es2_nvm_ops,
++};
++
+diff --git a/drivers/net/e1000e/ethtool.c b/drivers/net/e1000e/ethtool.c
+new file mode 100644
+index 0000000..6c417ea
+--- /dev/null
++++ b/drivers/net/e1000e/ethtool.c
+@@ -0,0 +1,1763 @@
++/*******************************************************************************
++
++ Intel PRO/1000 Linux driver
++ Copyright(c) 1999 - 2007 Intel Corporation.
++
++ This program is free software; you can redistribute it and/or modify it
++ under the terms and conditions of the GNU General Public License,
++ version 2, as published by the Free Software Foundation.
++
++ This program is distributed in the hope it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
++ more details.
++
++ You should have received a copy of the GNU General Public License along with
++ this program; if not, write to the Free Software Foundation, Inc.,
++ 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++ The full GNU General Public License is included in this distribution in
++ the file called "COPYING".
++
++ Contact Information:
++ Linux NICS <linux.nics@intel.com>
++ e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
++ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++/* ethtool support for e1000 */
++
++#include <linux/netdevice.h>
++
++#include <linux/ethtool.h>
++
++#include "e1000.h"
++
++struct e1000_stats {
++ char stat_string[ETH_GSTRING_LEN];
++ int sizeof_stat;
++ int stat_offset;
++};
++
++#define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
++ offsetof(struct e1000_adapter, m)
++static const struct e1000_stats e1000_gstrings_stats[] = {
++ { "rx_packets", E1000_STAT(stats.gprc) },
++ { "tx_packets", E1000_STAT(stats.gptc) },
++ { "rx_bytes", E1000_STAT(stats.gorcl) },
++ { "tx_bytes", E1000_STAT(stats.gotcl) },
++ { "rx_broadcast", E1000_STAT(stats.bprc) },
++ { "tx_broadcast", E1000_STAT(stats.bptc) },
++ { "rx_multicast", E1000_STAT(stats.mprc) },
++ { "tx_multicast", E1000_STAT(stats.mptc) },
++ { "rx_errors", E1000_STAT(net_stats.rx_errors) },
++ { "tx_errors", E1000_STAT(net_stats.tx_errors) },
++ { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
++ { "multicast", E1000_STAT(stats.mprc) },
++ { "collisions", E1000_STAT(stats.colc) },
++ { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
++ { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
++ { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
++ { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
++ { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
++ { "rx_missed_errors", E1000_STAT(stats.mpc) },
++ { "tx_aborted_errors", E1000_STAT(stats.ecol) },
++ { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
++ { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
++ { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
++ { "tx_window_errors", E1000_STAT(stats.latecol) },
++ { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
++ { "tx_deferred_ok", E1000_STAT(stats.dc) },
++ { "tx_single_coll_ok", E1000_STAT(stats.scc) },
++ { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
++ { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
++ { "tx_restart_queue", E1000_STAT(restart_queue) },
++ { "rx_long_length_errors", E1000_STAT(stats.roc) },
++ { "rx_short_length_errors", E1000_STAT(stats.ruc) },
++ { "rx_align_errors", E1000_STAT(stats.algnerrc) },
++ { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
++ { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
++ { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
++ { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
++ { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
++ { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
++ { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
++ { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
++ { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
++ { "rx_header_split", E1000_STAT(rx_hdr_split) },
++ { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
++ { "tx_smbus", E1000_STAT(stats.mgptc) },
++ { "rx_smbus", E1000_STAT(stats.mgprc) },
++ { "dropped_smbus", E1000_STAT(stats.mgpdc) },
++};
++
++#define E1000_GLOBAL_STATS_LEN \
++ sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
++#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
++static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
++ "Register test (offline)", "Eeprom test (offline)",
++ "Interrupt test (offline)", "Loopback test (offline)",
++ "Link test (on/offline)"
++};
++#define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
++
++static int e1000_get_settings(struct net_device *netdev,
++ struct ethtool_cmd *ecmd)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++
++ if (hw->media_type == e1000_media_type_copper) {
++
++ ecmd->supported = (SUPPORTED_10baseT_Half |
++ SUPPORTED_10baseT_Full |
++ SUPPORTED_100baseT_Half |
++ SUPPORTED_100baseT_Full |
++ SUPPORTED_1000baseT_Full |
++ SUPPORTED_Autoneg |
++ SUPPORTED_TP);
++ if (hw->phy.type == e1000_phy_ife)
++ ecmd->supported &= ~SUPPORTED_1000baseT_Full;
++ ecmd->advertising = ADVERTISED_TP;
++
++ if (hw->mac.autoneg == 1) {
++ ecmd->advertising |= ADVERTISED_Autoneg;
++ /* the e1000 autoneg seems to match ethtool nicely */
++ ecmd->advertising |= hw->phy.autoneg_advertised;
++ }
++
++ ecmd->port = PORT_TP;
++ ecmd->phy_address = hw->phy.addr;
++ ecmd->transceiver = XCVR_INTERNAL;
++
++ } else {
++ ecmd->supported = (SUPPORTED_1000baseT_Full |
++ SUPPORTED_FIBRE |
++ SUPPORTED_Autoneg);
++
++ ecmd->advertising = (ADVERTISED_1000baseT_Full |
++ ADVERTISED_FIBRE |
++ ADVERTISED_Autoneg);
++
++ ecmd->port = PORT_FIBRE;
++ ecmd->transceiver = XCVR_EXTERNAL;
++ }
++
++ if (er32(STATUS) & E1000_STATUS_LU) {
++
++ adapter->hw.mac.ops.get_link_up_info(hw, &adapter->link_speed,
++ &adapter->link_duplex);
++ ecmd->speed = adapter->link_speed;
++
++ /* unfortunately FULL_DUPLEX != DUPLEX_FULL
++ * and HALF_DUPLEX != DUPLEX_HALF */
++
++ if (adapter->link_duplex == FULL_DUPLEX)
++ ecmd->duplex = DUPLEX_FULL;
++ else
++ ecmd->duplex = DUPLEX_HALF;
++ } else {
++ ecmd->speed = -1;
++ ecmd->duplex = -1;
++ }
++
++ ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
++ hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
++ return 0;
++}
++
++static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
++{
++ struct e1000_mac_info *mac = &adapter->hw.mac;
++
++ mac->autoneg = 0;
++
++ /* Fiber NICs only allow 1000 gbps Full duplex */
++ if ((adapter->hw.media_type == e1000_media_type_fiber) &&
++ spddplx != (SPEED_1000 + DUPLEX_FULL)) {
++ ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
++ "configuration\n");
++ return -EINVAL;
++ }
++
++ switch (spddplx) {
++ case SPEED_10 + DUPLEX_HALF:
++ mac->forced_speed_duplex = ADVERTISE_10_HALF;
++ break;
++ case SPEED_10 + DUPLEX_FULL:
++ mac->forced_speed_duplex = ADVERTISE_10_FULL;
++ break;
++ case SPEED_100 + DUPLEX_HALF:
++ mac->forced_speed_duplex = ADVERTISE_100_HALF;
++ break;
++ case SPEED_100 + DUPLEX_FULL:
++ mac->forced_speed_duplex = ADVERTISE_100_FULL;
++ break;
++ case SPEED_1000 + DUPLEX_FULL:
++ mac->autoneg = 1;
++ adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
++ break;
++ case SPEED_1000 + DUPLEX_HALF: /* not supported */
++ default:
++ ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
++ "configuration\n");
++ return -EINVAL;
++ }
++ return 0;
++}
++
++static int e1000_set_settings(struct net_device *netdev,
++ struct ethtool_cmd *ecmd)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++
++ /* When SoL/IDER sessions are active, autoneg/speed/duplex
++ * cannot be changed */
++ if (e1000_check_reset_block(hw)) {
++ ndev_err(netdev, "Cannot change link "
++ "characteristics when SoL/IDER is active.\n");
++ return -EINVAL;
++ }
++
++ while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
++ msleep(1);
++
++ if (ecmd->autoneg == AUTONEG_ENABLE) {
++ hw->mac.autoneg = 1;
++ if (hw->media_type == e1000_media_type_fiber)
++ hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
++ ADVERTISED_FIBRE |
++ ADVERTISED_Autoneg;
++ else
++ hw->phy.autoneg_advertised = ecmd->advertising |
++ ADVERTISED_TP |
++ ADVERTISED_Autoneg;
++ ecmd->advertising = hw->phy.autoneg_advertised;
++ } else {
++ if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
++ clear_bit(__E1000_RESETTING, &adapter->state);
++ return -EINVAL;
++ }
++ }
++
++ /* reset the link */
++
++ if (netif_running(adapter->netdev)) {
++ e1000_down(adapter);
++ e1000_up(adapter);
++ } else {
++ e1000_reset(adapter);
++ }
++
++ clear_bit(__E1000_RESETTING, &adapter->state);
++ return 0;
++}
++
++static void e1000_get_pauseparam(struct net_device *netdev,
++ struct ethtool_pauseparam *pause)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++
++ pause->autoneg =
++ (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
++
++ if (hw->mac.fc == e1000_fc_rx_pause) {
++ pause->rx_pause = 1;
++ } else if (hw->mac.fc == e1000_fc_tx_pause) {
++ pause->tx_pause = 1;
++ } else if (hw->mac.fc == e1000_fc_full) {
++ pause->rx_pause = 1;
++ pause->tx_pause = 1;
++ }
++}
++
++static int e1000_set_pauseparam(struct net_device *netdev,
++ struct ethtool_pauseparam *pause)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++ int retval = 0;
++
++ adapter->fc_autoneg = pause->autoneg;
++
++ while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
++ msleep(1);
++
++ if (pause->rx_pause && pause->tx_pause)
++ hw->mac.fc = e1000_fc_full;
++ else if (pause->rx_pause && !pause->tx_pause)
++ hw->mac.fc = e1000_fc_rx_pause;
++ else if (!pause->rx_pause && pause->tx_pause)
++ hw->mac.fc = e1000_fc_tx_pause;
++ else if (!pause->rx_pause && !pause->tx_pause)
++ hw->mac.fc = e1000_fc_none;
++
++ hw->mac.original_fc = hw->mac.fc;
++
++ if (adapter->fc_autoneg == AUTONEG_ENABLE) {
++ if (netif_running(adapter->netdev)) {
++ e1000_down(adapter);
++ e1000_up(adapter);
++ } else {
++ e1000_reset(adapter);
++ }
++ } else {
++ retval = ((hw->media_type == e1000_media_type_fiber) ?
++ hw->mac.ops.setup_link(hw) : e1000_force_mac_fc(hw));
++ }
++
++ clear_bit(__E1000_RESETTING, &adapter->state);
++ return retval;
++}
++
++static u32 e1000_get_rx_csum(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ return (adapter->flags & FLAG_RX_CSUM_ENABLED);
++}
++
++static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++
++ if (data)
++ adapter->flags |= FLAG_RX_CSUM_ENABLED;
++ else
++ adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
++
++ if (netif_running(netdev))
++ e1000_reinit_locked(adapter);
++ else
++ e1000_reset(adapter);
++ return 0;
++}
++
++static u32 e1000_get_tx_csum(struct net_device *netdev)
++{
++ return ((netdev->features & NETIF_F_HW_CSUM) != 0);
++}
++
++static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
++{
++ if (data)
++ netdev->features |= NETIF_F_HW_CSUM;
++ else
++ netdev->features &= ~NETIF_F_HW_CSUM;
++
++ return 0;
++}
++
++static int e1000_set_tso(struct net_device *netdev, u32 data)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++
++ if (data) {
++ netdev->features |= NETIF_F_TSO;
++ netdev->features |= NETIF_F_TSO6;
++ } else {
++ netdev->features &= ~NETIF_F_TSO;
++ netdev->features &= ~NETIF_F_TSO6;
++ }
++
++ ndev_info(netdev, "TSO is %s\n",
++ data ? "Enabled" : "Disabled");
++ adapter->flags |= FLAG_TSO_FORCE;
++ return 0;
++}
++
++static u32 e1000_get_msglevel(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ return adapter->msg_enable;
++}
++
++static void e1000_set_msglevel(struct net_device *netdev, u32 data)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ adapter->msg_enable = data;
++}
++
++static int e1000_get_regs_len(struct net_device *netdev)
++{
++#define E1000_REGS_LEN 32 /* overestimate */
++ return E1000_REGS_LEN * sizeof(u32);
++}
++
++static void e1000_get_regs(struct net_device *netdev,
++ struct ethtool_regs *regs, void *p)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++ u32 *regs_buff = p;
++ u16 phy_data;
++ u8 revision_id;
++
++ memset(p, 0, E1000_REGS_LEN * sizeof(u32));
++
++ pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
++
++ regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
++
++ regs_buff[0] = er32(CTRL);
++ regs_buff[1] = er32(STATUS);
++
++ regs_buff[2] = er32(RCTL);
++ regs_buff[3] = er32(RDLEN);
++ regs_buff[4] = er32(RDH);
++ regs_buff[5] = er32(RDT);
++ regs_buff[6] = er32(RDTR);
++
++ regs_buff[7] = er32(TCTL);
++ regs_buff[8] = er32(TDLEN);
++ regs_buff[9] = er32(TDH);
++ regs_buff[10] = er32(TDT);
++ regs_buff[11] = er32(TIDV);
++
++ regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
++ if (hw->phy.type == e1000_phy_m88) {
++ e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
++ regs_buff[13] = (u32)phy_data; /* cable length */
++ regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
++ regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
++ regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
++ e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
++ regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
++ regs_buff[18] = regs_buff[13]; /* cable polarity */
++ regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
++ regs_buff[20] = regs_buff[17]; /* polarity correction */
++ /* phy receive errors */
++ regs_buff[22] = adapter->phy_stats.receive_errors;
++ regs_buff[23] = regs_buff[13]; /* mdix mode */
++ }
++ regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
++ e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
++ regs_buff[24] = (u32)phy_data; /* phy local receiver status */
++ regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
++}
++
++static int e1000_get_eeprom_len(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ return adapter->hw.nvm.word_size * 2;
++}
++
++static int e1000_get_eeprom(struct net_device *netdev,
++ struct ethtool_eeprom *eeprom, u8 *bytes)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++ u16 *eeprom_buff;
++ int first_word;
++ int last_word;
++ int ret_val = 0;
++ u16 i;
++
++ if (eeprom->len == 0)
++ return -EINVAL;
++
++ eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
++
++ first_word = eeprom->offset >> 1;
++ last_word = (eeprom->offset + eeprom->len - 1) >> 1;
++
++ eeprom_buff = kmalloc(sizeof(u16) *
++ (last_word - first_word + 1), GFP_KERNEL);
++ if (!eeprom_buff)
++ return -ENOMEM;
++
++ if (hw->nvm.type == e1000_nvm_eeprom_spi) {
++ ret_val = e1000_read_nvm(hw, first_word,
++ last_word - first_word + 1,
++ eeprom_buff);
++ } else {
++ for (i = 0; i < last_word - first_word + 1; i++) {
++ ret_val = e1000_read_nvm(hw, first_word + i, 1,
++ &eeprom_buff[i]);
++ if (ret_val)
++ break;
++ }
++ }
++
++ /* Device's eeprom is always little-endian, word addressable */
++ for (i = 0; i < last_word - first_word + 1; i++)
++ le16_to_cpus(&eeprom_buff[i]);
++
++ memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
++ kfree(eeprom_buff);
++
++ return ret_val;
++}
++
++static int e1000_set_eeprom(struct net_device *netdev,
++ struct ethtool_eeprom *eeprom, u8 *bytes)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++ u16 *eeprom_buff;
++ void *ptr;
++ int max_len;
++ int first_word;
++ int last_word;
++ int ret_val = 0;
++ u16 i;
++
++ if (eeprom->len == 0)
++ return -EOPNOTSUPP;
++
++ if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
++ return -EFAULT;
++
++ max_len = hw->nvm.word_size * 2;
++
++ first_word = eeprom->offset >> 1;
++ last_word = (eeprom->offset + eeprom->len - 1) >> 1;
++ eeprom_buff = kmalloc(max_len, GFP_KERNEL);
++ if (!eeprom_buff)
++ return -ENOMEM;
++
++ ptr = (void *)eeprom_buff;
++
++ if (eeprom->offset & 1) {
++ /* need read/modify/write of first changed EEPROM word */
++ /* only the second byte of the word is being modified */
++ ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
++ ptr++;
++ }
++ if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
++ /* need read/modify/write of last changed EEPROM word */
++ /* only the first byte of the word is being modified */
++ ret_val = e1000_read_nvm(hw, last_word, 1,
++ &eeprom_buff[last_word - first_word]);
++
++ /* Device's eeprom is always little-endian, word addressable */
++ for (i = 0; i < last_word - first_word + 1; i++)
++ le16_to_cpus(&eeprom_buff[i]);
++
++ memcpy(ptr, bytes, eeprom->len);
++
++ for (i = 0; i < last_word - first_word + 1; i++)
++ eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
++
++ ret_val = e1000_write_nvm(hw, first_word,
++ last_word - first_word + 1, eeprom_buff);
++
++ /* Update the checksum over the first part of the EEPROM if needed
++ * and flush shadow RAM for 82573 controllers */
++ if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
++ (hw->mac.type == e1000_82573)))
++ e1000_update_nvm_checksum(hw);
++
++ kfree(eeprom_buff);
++ return ret_val;
++}
++
++static void e1000_get_drvinfo(struct net_device *netdev,
++ struct ethtool_drvinfo *drvinfo)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ char firmware_version[32];
++ u16 eeprom_data;
++
++ strncpy(drvinfo->driver, e1000_driver_name, 32);
++ strncpy(drvinfo->version, e1000_driver_version, 32);
++
++ /* EEPROM image version # is reported as firmware version # for
++ * PCI-E controllers */
++ e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
++ sprintf(firmware_version, "%d.%d-%d",
++ (eeprom_data & 0xF000) >> 12,
++ (eeprom_data & 0x0FF0) >> 4,
++ eeprom_data & 0x000F);
++
++ strncpy(drvinfo->fw_version, firmware_version, 32);
++ strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
++ drvinfo->n_stats = E1000_STATS_LEN;
++ drvinfo->testinfo_len = E1000_TEST_LEN;
++ drvinfo->regdump_len = e1000_get_regs_len(netdev);
++ drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
++}
++
++static void e1000_get_ringparam(struct net_device *netdev,
++ struct ethtool_ringparam *ring)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_ring *tx_ring = adapter->tx_ring;
++ struct e1000_ring *rx_ring = adapter->rx_ring;
++
++ ring->rx_max_pending = E1000_MAX_RXD;
++ ring->tx_max_pending = E1000_MAX_TXD;
++ ring->rx_mini_max_pending = 0;
++ ring->rx_jumbo_max_pending = 0;
++ ring->rx_pending = rx_ring->count;
++ ring->tx_pending = tx_ring->count;
++ ring->rx_mini_pending = 0;
++ ring->rx_jumbo_pending = 0;
++}
++
++static int e1000_set_ringparam(struct net_device *netdev,
++ struct ethtool_ringparam *ring)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_ring *tx_ring, *tx_old;
++ struct e1000_ring *rx_ring, *rx_old;
++ int err;
++
++ if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
++ return -EINVAL;
++
++ while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
++ msleep(1);
++
++ if (netif_running(adapter->netdev))
++ e1000_down(adapter);
++
++ tx_old = adapter->tx_ring;
++ rx_old = adapter->rx_ring;
++
++ err = -ENOMEM;
++ tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
++ if (!tx_ring)
++ goto err_alloc_tx;
++
++ rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
++ if (!rx_ring)
++ goto err_alloc_rx;
++
++ adapter->tx_ring = tx_ring;
++ adapter->rx_ring = rx_ring;
++
++ rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
++ rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
++ rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
++
++ tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
++ tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
++ tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
++
++ if (netif_running(adapter->netdev)) {
++ /* Try to get new resources before deleting old */
++ err = e1000_setup_rx_resources(adapter);
++ if (err)
++ goto err_setup_rx;
++ err = e1000_setup_tx_resources(adapter);
++ if (err)
++ goto err_setup_tx;
++
++ /* save the new, restore the old in order to free it,
++ * then restore the new back again */
++ adapter->rx_ring = rx_old;
++ adapter->tx_ring = tx_old;
++ e1000_free_rx_resources(adapter);
++ e1000_free_tx_resources(adapter);
++ kfree(tx_old);
++ kfree(rx_old);
++ adapter->rx_ring = rx_ring;
++ adapter->tx_ring = tx_ring;
++ err = e1000_up(adapter);
++ if (err)
++ goto err_setup;
++ }
++
++ clear_bit(__E1000_RESETTING, &adapter->state);
++ return 0;
++err_setup_tx:
++ e1000_free_rx_resources(adapter);
++err_setup_rx:
++ adapter->rx_ring = rx_old;
++ adapter->tx_ring = tx_old;
++ kfree(rx_ring);
++err_alloc_rx:
++ kfree(tx_ring);
++err_alloc_tx:
++ e1000_up(adapter);
++err_setup:
++ clear_bit(__E1000_RESETTING, &adapter->state);
++ return err;
++}
++
++#define REG_PATTERN_TEST(R, M, W) REG_PATTERN_TEST_ARRAY(R, 0, M, W)
++#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, writeable) \
++{ \
++ u32 _pat; \
++ u32 _value; \
++ u32 _test[] = {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
++ for (_pat = 0; _pat < ARRAY_SIZE(_test); _pat++) { \
++ E1000_WRITE_REG_ARRAY(hw, reg, offset, \
++ (_test[_pat] & writeable)); \
++ _value = E1000_READ_REG_ARRAY(hw, reg, offset); \
++ if (_value != (_test[_pat] & writeable & mask)) { \
++ ndev_err(netdev, "pattern test reg %04X " \
++ "failed: got 0x%08X expected 0x%08X\n", \
++ reg + offset, \
++ value, (_test[_pat] & writeable & mask)); \
++ *data = reg; \
++ return 1; \
++ } \
++ } \
++}
++
++#define REG_SET_AND_CHECK(R, M, W) \
++{ \
++ u32 _value; \
++ __ew32(hw, R, W & M); \
++ _value = __er32(hw, R); \
++ if ((W & M) != (_value & M)) { \
++ ndev_err(netdev, "set/check reg %04X test failed: " \
++ "got 0x%08X expected 0x%08X\n", R, (_value & M), \
++ (W & M)); \
++ *data = R; \
++ return 1; \
++ } \
++}
++
++static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ struct e1000_mac_info *mac = &adapter->hw.mac;
++ struct net_device *netdev = adapter->netdev;
++ u32 value;
++ u32 before;
++ u32 after;
++ u32 i;
++ u32 toggle;
++
++ /* The status register is Read Only, so a write should fail.
++ * Some bits that get toggled are ignored.
++ */
++ switch (mac->type) {
++ /* there are several bits on newer hardware that are r/w */
++ case e1000_82571:
++ case e1000_82572:
++ case e1000_80003es2lan:
++ toggle = 0x7FFFF3FF;
++ break;
++ case e1000_82573:
++ case e1000_ich8lan:
++ case e1000_ich9lan:
++ toggle = 0x7FFFF033;
++ break;
++ default:
++ toggle = 0xFFFFF833;
++ break;
++ }
++
++ before = er32(STATUS);
++ value = (er32(STATUS) & toggle);
++ ew32(STATUS, toggle);
++ after = er32(STATUS) & toggle;
++ if (value != after) {
++ ndev_err(netdev, "failed STATUS register test got: "
++ "0x%08X expected: 0x%08X\n", after, value);
++ *data = 1;
++ return 1;
++ }
++ /* restore previous status */
++ ew32(STATUS, before);
++
++ if ((mac->type != e1000_ich8lan) &&
++ (mac->type != e1000_ich9lan)) {
++ REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
++ REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
++ REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
++ REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
++ }
++
++ REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
++ REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
++ REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
++ REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
++ REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
++ REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
++ REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
++ REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
++ REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
++ REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
++
++ REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
++
++ before = (((mac->type == e1000_ich8lan) ||
++ (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
++ REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
++ REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
++
++ REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x01FFFFFF);
++ REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFF000, 0xFFFFFFFF);
++ REG_PATTERN_TEST(E1000_TXCW, 0x0000FFFF, 0x0000FFFF);
++ REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFF000, 0xFFFFFFFF);
++
++ for (i = 0; i < mac->mta_reg_count; i++)
++ REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
++
++ *data = 0;
++ return 0;
++}
++
++static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
++{
++ u16 temp;
++ u16 checksum = 0;
++ u16 i;
++
++ *data = 0;
++ /* Read and add up the contents of the EEPROM */
++ for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
++ if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
++ *data = 1;
++ break;
++ }
++ checksum += temp;
++ }
++
++ /* If Checksum is not Correct return error else test passed */
++ if ((checksum != (u16) NVM_SUM) && !(*data))
++ *data = 2;
++
++ return *data;
++}
++
++static irqreturn_t e1000_test_intr(int irq, void *data)
++{
++ struct net_device *netdev = (struct net_device *) data;
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++
++ adapter->test_icr |= er32(ICR);
++
++ return IRQ_HANDLED;
++}
++
++static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
++{
++ struct net_device *netdev = adapter->netdev;
++ struct e1000_hw *hw = &adapter->hw;
++ u32 mask;
++ u32 shared_int = 1;
++ u32 irq = adapter->pdev->irq;
++ int i;
++
++ *data = 0;
++
++ /* NOTE: we don't test MSI interrupts here, yet */
++ /* Hook up test interrupt handler just for this test */
++ if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
++ netdev)) {
++ shared_int = 0;
++ } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
++ netdev->name, netdev)) {
++ *data = 1;
++ return -1;
++ }
++ ndev_info(netdev, "testing %s interrupt\n",
++ (shared_int ? "shared" : "unshared"));
++
++ /* Disable all the interrupts */
++ ew32(IMC, 0xFFFFFFFF);
++ msleep(10);
++
++ /* Test each interrupt */
++ for (i = 0; i < 10; i++) {
++
++ if (((adapter->hw.mac.type == e1000_ich8lan) ||
++ (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
++ continue;
++
++ /* Interrupt to test */
++ mask = 1 << i;
++
++ if (!shared_int) {
++ /* Disable the interrupt to be reported in
++ * the cause register and then force the same
++ * interrupt and see if one gets posted. If
++ * an interrupt was posted to the bus, the
++ * test failed.
++ */
++ adapter->test_icr = 0;
++ ew32(IMC, mask);
++ ew32(ICS, mask);
++ msleep(10);
++
++ if (adapter->test_icr & mask) {
++ *data = 3;
++ break;
++ }
++ }
++
++ /* Enable the interrupt to be reported in
++ * the cause register and then force the same
++ * interrupt and see if one gets posted. If
++ * an interrupt was not posted to the bus, the
++ * test failed.
++ */
++ adapter->test_icr = 0;
++ ew32(IMS, mask);
++ ew32(ICS, mask);
++ msleep(10);
++
++ if (!(adapter->test_icr & mask)) {
++ *data = 4;
++ break;
++ }
++
++ if (!shared_int) {
++ /* Disable the other interrupts to be reported in
++ * the cause register and then force the other
++ * interrupts and see if any get posted. If
++ * an interrupt was posted to the bus, the
++ * test failed.
++ */
++ adapter->test_icr = 0;
++ ew32(IMC, ~mask & 0x00007FFF);
++ ew32(ICS, ~mask & 0x00007FFF);
++ msleep(10);
++
++ if (adapter->test_icr) {
++ *data = 5;
++ break;
++ }
++ }
++ }
++
++ /* Disable all the interrupts */
++ ew32(IMC, 0xFFFFFFFF);
++ msleep(10);
++
++ /* Unhook test interrupt handler */
++ free_irq(irq, netdev);
++
++ return *data;
++}
++
++static void e1000_free_desc_rings(struct e1000_adapter *adapter)
++{
++ struct e1000_ring *tx_ring = &adapter->test_tx_ring;
++ struct e1000_ring *rx_ring = &adapter->test_rx_ring;
++ struct pci_dev *pdev = adapter->pdev;
++ int i;
++
++ if (tx_ring->desc && tx_ring->buffer_info) {
++ for (i = 0; i < tx_ring->count; i++) {
++ if (tx_ring->buffer_info[i].dma)
++ pci_unmap_single(pdev,
++ tx_ring->buffer_info[i].dma,
++ tx_ring->buffer_info[i].length,
++ PCI_DMA_TODEVICE);
++ if (tx_ring->buffer_info[i].skb)
++ dev_kfree_skb(tx_ring->buffer_info[i].skb);
++ }
++ }
++
++ if (rx_ring->desc && rx_ring->buffer_info) {
++ for (i = 0; i < rx_ring->count; i++) {
++ if (rx_ring->buffer_info[i].dma)
++ pci_unmap_single(pdev,
++ rx_ring->buffer_info[i].dma,
++ 2048, PCI_DMA_FROMDEVICE);
++ if (rx_ring->buffer_info[i].skb)
++ dev_kfree_skb(rx_ring->buffer_info[i].skb);
++ }
++ }
++
++ if (tx_ring->desc) {
++ pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
++ tx_ring->dma);
++ tx_ring->desc = NULL;
++ }
++ if (rx_ring->desc) {
++ pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
++ rx_ring->dma);
++ rx_ring->desc = NULL;
++ }
++
++ kfree(tx_ring->buffer_info);
++ tx_ring->buffer_info = NULL;
++ kfree(rx_ring->buffer_info);
++ rx_ring->buffer_info = NULL;
++}
++
++static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
++{
++ struct e1000_ring *tx_ring = &adapter->test_tx_ring;
++ struct e1000_ring *rx_ring = &adapter->test_rx_ring;
++ struct pci_dev *pdev = adapter->pdev;
++ struct e1000_hw *hw = &adapter->hw;
++ u32 rctl;
++ int size;
++ int i;
++ int ret_val;
++
++ /* Setup Tx descriptor ring and Tx buffers */
++
++ if (!tx_ring->count)
++ tx_ring->count = E1000_DEFAULT_TXD;
++
++ size = tx_ring->count * sizeof(struct e1000_buffer);
++ tx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
++ if (!tx_ring->buffer_info) {
++ ret_val = 1;
++ goto err_nomem;
++ }
++ memset(tx_ring->buffer_info, 0, size);
++
++ tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
++ tx_ring->size = ALIGN(tx_ring->size, 4096);
++ tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
++ &tx_ring->dma);
++ if (!tx_ring->desc) {
++ ret_val = 2;
++ goto err_nomem;
++ }
++ memset(tx_ring->desc, 0, tx_ring->size);
++ tx_ring->next_to_use = 0;
++ tx_ring->next_to_clean = 0;
++
++ ew32(TDBAL,
++ ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
++ ew32(TDBAH, ((u64) tx_ring->dma >> 32));
++ ew32(TDLEN,
++ tx_ring->count * sizeof(struct e1000_tx_desc));
++ ew32(TDH, 0);
++ ew32(TDT, 0);
++ ew32(TCTL,
++ E1000_TCTL_PSP | E1000_TCTL_EN |
++ E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
++ E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
++
++ for (i = 0; i < tx_ring->count; i++) {
++ struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
++ struct sk_buff *skb;
++ unsigned int skb_size = 1024;
++
++ skb = alloc_skb(skb_size, GFP_KERNEL);
++ if (!skb) {
++ ret_val = 3;
++ goto err_nomem;
++ }
++ skb_put(skb, skb_size);
++ tx_ring->buffer_info[i].skb = skb;
++ tx_ring->buffer_info[i].length = skb->len;
++ tx_ring->buffer_info[i].dma =
++ pci_map_single(pdev, skb->data, skb->len,
++ PCI_DMA_TODEVICE);
++ tx_desc->buffer_addr = cpu_to_le64(
++ tx_ring->buffer_info[i].dma);
++ tx_desc->lower.data = cpu_to_le32(skb->len);
++ tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
++ E1000_TXD_CMD_IFCS |
++ E1000_TXD_CMD_RPS);
++ tx_desc->upper.data = 0;
++ }
++
++ /* Setup Rx descriptor ring and Rx buffers */
++
++ if (!rx_ring->count)
++ rx_ring->count = E1000_DEFAULT_RXD;
++
++ size = rx_ring->count * sizeof(struct e1000_buffer);
++ rx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
++ if (!rx_ring->buffer_info) {
++ ret_val = 4;
++ goto err_nomem;
++ }
++ memset(rx_ring->buffer_info, 0, size);
++
++ rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
++ rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
++ &rx_ring->dma);
++ if (!rx_ring->desc) {
++ ret_val = 5;
++ goto err_nomem;
++ }
++ memset(rx_ring->desc, 0, rx_ring->size);
++ rx_ring->next_to_use = 0;
++ rx_ring->next_to_clean = 0;
++
++ rctl = er32(RCTL);
++ ew32(RCTL, rctl & ~E1000_RCTL_EN);
++ ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
++ ew32(RDBAH, ((u64) rx_ring->dma >> 32));
++ ew32(RDLEN, rx_ring->size);
++ ew32(RDH, 0);
++ ew32(RDT, 0);
++ rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
++ E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
++ (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
++ ew32(RCTL, rctl);
++
++ for (i = 0; i < rx_ring->count; i++) {
++ struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
++ struct sk_buff *skb;
++
++ skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
++ if (!skb) {
++ ret_val = 6;
++ goto err_nomem;
++ }
++ skb_reserve(skb, NET_IP_ALIGN);
++ rx_ring->buffer_info[i].skb = skb;
++ rx_ring->buffer_info[i].dma =
++ pci_map_single(pdev, skb->data, 2048,
++ PCI_DMA_FROMDEVICE);
++ rx_desc->buffer_addr =
++ cpu_to_le64(rx_ring->buffer_info[i].dma);
++ memset(skb->data, 0x00, skb->len);
++ }
++
++ return 0;
++
++err_nomem:
++ e1000_free_desc_rings(adapter);
++ return ret_val;
++}
++
++static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
++{
++ /* Write out to PHY registers 29 and 30 to disable the Receiver. */
++ e1e_wphy(&adapter->hw, 29, 0x001F);
++ e1e_wphy(&adapter->hw, 30, 0x8FFC);
++ e1e_wphy(&adapter->hw, 29, 0x001A);
++ e1e_wphy(&adapter->hw, 30, 0x8FF0);
++}
++
++static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ u32 ctrl_reg = 0;
++ u32 stat_reg = 0;
++
++ adapter->hw.mac.autoneg = 0;
++
++ if (adapter->hw.phy.type == e1000_phy_m88) {
++ /* Auto-MDI/MDIX Off */
++ e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
++ /* reset to update Auto-MDI/MDIX */
++ e1e_wphy(hw, PHY_CONTROL, 0x9140);
++ /* autoneg off */
++ e1e_wphy(hw, PHY_CONTROL, 0x8140);
++ } else if (adapter->hw.phy.type == e1000_phy_gg82563)
++ e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
++
++ ctrl_reg = er32(CTRL);
++
++ if (adapter->hw.phy.type == e1000_phy_ife) {
++ /* force 100, set loopback */
++ e1e_wphy(hw, PHY_CONTROL, 0x6100);
++
++ /* Now set up the MAC to the same speed/duplex as the PHY. */
++ ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
++ ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
++ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
++ E1000_CTRL_SPD_100 |/* Force Speed to 100 */
++ E1000_CTRL_FD); /* Force Duplex to FULL */
++ } else {
++ /* force 1000, set loopback */
++ e1e_wphy(hw, PHY_CONTROL, 0x4140);
++
++ /* Now set up the MAC to the same speed/duplex as the PHY. */
++ ctrl_reg = er32(CTRL);
++ ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
++ ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
++ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
++ E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
++ E1000_CTRL_FD); /* Force Duplex to FULL */
++ }
++
++ if (adapter->hw.media_type == e1000_media_type_copper &&
++ adapter->hw.phy.type == e1000_phy_m88) {
++ ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
++ } else {
++ /* Set the ILOS bit on the fiber Nic if half duplex link is
++ * detected. */
++ stat_reg = er32(STATUS);
++ if ((stat_reg & E1000_STATUS_FD) == 0)
++ ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
++ }
++
++ ew32(CTRL, ctrl_reg);
++
++ /* Disable the receiver on the PHY so when a cable is plugged in, the
++ * PHY does not begin to autoneg when a cable is reconnected to the NIC.
++ */
++ if (adapter->hw.phy.type == e1000_phy_m88)
++ e1000_phy_disable_receiver(adapter);
++
++ udelay(500);
++
++ return 0;
++}
++
++static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ u32 ctrl = er32(CTRL);
++ int link = 0;
++
++ /* special requirements for 82571/82572 fiber adapters */
++
++ /* jump through hoops to make sure link is up because serdes
++ * link is hardwired up */
++ ctrl |= E1000_CTRL_SLU;
++ ew32(CTRL, ctrl);
++
++ /* disable autoneg */
++ ctrl = er32(TXCW);
++ ctrl &= ~(1 << 31);
++ ew32(TXCW, ctrl);
++
++ link = (er32(STATUS) & E1000_STATUS_LU);
++
++ if (!link) {
++ /* set invert loss of signal */
++ ctrl = er32(CTRL);
++ ctrl |= E1000_CTRL_ILOS;
++ ew32(CTRL, ctrl);
++ }
++
++ /* special write to serdes control register to enable SerDes analog
++ * loopback */
++#define E1000_SERDES_LB_ON 0x410
++ ew32(SCTL, E1000_SERDES_LB_ON);
++ msleep(10);
++
++ return 0;
++}
++
++/* only call this for fiber/serdes connections to es2lan */
++static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ u32 ctrlext = er32(CTRL_EXT);
++ u32 ctrl = er32(CTRL);
++
++ /* save CTRL_EXT to restore later, reuse an empty variable (unused
++ on mac_type 80003es2lan) */
++ adapter->tx_fifo_head = ctrlext;
++
++ /* clear the serdes mode bits, putting the device into mac loopback */
++ ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
++ ew32(CTRL_EXT, ctrlext);
++
++ /* force speed to 1000/FD, link up */
++ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
++ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
++ E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
++ ew32(CTRL, ctrl);
++
++ /* set mac loopback */
++ ctrl = er32(RCTL);
++ ctrl |= E1000_RCTL_LBM_MAC;
++ ew32(RCTL, ctrl);
++
++ /* set testing mode parameters (no need to reset later) */
++#define KMRNCTRLSTA_OPMODE (0x1F << 16)
++#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
++ ew32(KMRNCTRLSTA,
++ (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
++
++ return 0;
++}
++
++static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ u32 rctl;
++
++ if (hw->media_type == e1000_media_type_fiber ||
++ hw->media_type == e1000_media_type_internal_serdes) {
++ switch (hw->mac.type) {
++ case e1000_80003es2lan:
++ return e1000_set_es2lan_mac_loopback(adapter);
++ break;
++ case e1000_82571:
++ case e1000_82572:
++ return e1000_set_82571_fiber_loopback(adapter);
++ break;
++ default:
++ rctl = er32(RCTL);
++ rctl |= E1000_RCTL_LBM_TCVR;
++ ew32(RCTL, rctl);
++ return 0;
++ }
++ } else if (hw->media_type == e1000_media_type_copper) {
++ return e1000_integrated_phy_loopback(adapter);
++ }
++
++ return 7;
++}
++
++static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ u32 rctl;
++ u16 phy_reg;
++
++ rctl = er32(RCTL);
++ rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
++ ew32(RCTL, rctl);
++
++ switch (hw->mac.type) {
++ case e1000_80003es2lan:
++ if (hw->media_type == e1000_media_type_fiber ||
++ hw->media_type == e1000_media_type_internal_serdes) {
++ /* restore CTRL_EXT, stealing space from tx_fifo_head */
++ ew32(CTRL_EXT,
++ adapter->tx_fifo_head);
++ adapter->tx_fifo_head = 0;
++ }
++ /* fall through */
++ case e1000_82571:
++ case e1000_82572:
++ if (hw->media_type == e1000_media_type_fiber ||
++ hw->media_type == e1000_media_type_internal_serdes) {
++#define E1000_SERDES_LB_OFF 0x400
++ ew32(SCTL, E1000_SERDES_LB_OFF);
++ msleep(10);
++ break;
++ }
++ /* Fall Through */
++ default:
++ hw->mac.autoneg = 1;
++ if (hw->phy.type == e1000_phy_gg82563)
++ e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
++ e1e_rphy(hw, PHY_CONTROL, &phy_reg);
++ if (phy_reg & MII_CR_LOOPBACK) {
++ phy_reg &= ~MII_CR_LOOPBACK;
++ e1e_wphy(hw, PHY_CONTROL, phy_reg);
++ e1000_commit_phy(hw);
++ }
++ break;
++ }
++}
++
++static void e1000_create_lbtest_frame(struct sk_buff *skb,
++ unsigned int frame_size)
++{
++ memset(skb->data, 0xFF, frame_size);
++ frame_size &= ~1;
++ memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
++ memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
++ memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
++}
++
++static int e1000_check_lbtest_frame(struct sk_buff *skb,
++ unsigned int frame_size)
++{
++ frame_size &= ~1;
++ if (*(skb->data + 3) == 0xFF)
++ if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
++ (*(skb->data + frame_size / 2 + 12) == 0xAF))
++ return 0;
++ return 13;
++}
++
++static int e1000_run_loopback_test(struct e1000_adapter *adapter)
++{
++ struct e1000_ring *tx_ring = &adapter->test_tx_ring;
++ struct e1000_ring *rx_ring = &adapter->test_rx_ring;
++ struct pci_dev *pdev = adapter->pdev;
++ struct e1000_hw *hw = &adapter->hw;
++ int i, j, k, l;
++ int lc;
++ int good_cnt;
++ int ret_val = 0;
++ unsigned long time;
++
++ ew32(RDT, rx_ring->count - 1);
++
++ /* Calculate the loop count based on the largest descriptor ring
++ * The idea is to wrap the largest ring a number of times using 64
++ * send/receive pairs during each loop
++ */
++
++ if (rx_ring->count <= tx_ring->count)
++ lc = ((tx_ring->count / 64) * 2) + 1;
++ else
++ lc = ((rx_ring->count / 64) * 2) + 1;
++
++ k = 0;
++ l = 0;
++ for (j = 0; j <= lc; j++) { /* loop count loop */
++ for (i = 0; i < 64; i++) { /* send the packets */
++ e1000_create_lbtest_frame(
++ tx_ring->buffer_info[i].skb, 1024);
++ pci_dma_sync_single_for_device(pdev,
++ tx_ring->buffer_info[k].dma,
++ tx_ring->buffer_info[k].length,
++ PCI_DMA_TODEVICE);
++ k++;
++ if (k == tx_ring->count)
++ k = 0;
++ }
++ ew32(TDT, k);
++ msleep(200);
++ time = jiffies; /* set the start time for the receive */
++ good_cnt = 0;
++ do { /* receive the sent packets */
++ pci_dma_sync_single_for_cpu(pdev,
++ rx_ring->buffer_info[l].dma, 2048,
++ PCI_DMA_FROMDEVICE);
++
++ ret_val = e1000_check_lbtest_frame(
++ rx_ring->buffer_info[l].skb, 1024);
++ if (!ret_val)
++ good_cnt++;
++ l++;
++ if (l == rx_ring->count)
++ l = 0;
++ /* time + 20 msecs (200 msecs on 2.4) is more than
++ * enough time to complete the receives, if it's
++ * exceeded, break and error off
++ */
++ } while (good_cnt < 64 && jiffies < (time + 20));
++ if (good_cnt != 64) {
++ ret_val = 13; /* ret_val is the same as mis-compare */
++ break;
++ }
++ if (jiffies >= (time + 2)) {
++ ret_val = 14; /* error code for time out error */
++ break;
++ }
++ } /* end loop count loop */
++ return ret_val;
++}
++
++static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
++{
++ /* PHY loopback cannot be performed if SoL/IDER
++ * sessions are active */
++ if (e1000_check_reset_block(&adapter->hw)) {
++ ndev_err(adapter->netdev, "Cannot do PHY loopback test "
++ "when SoL/IDER is active.\n");
++ *data = 0;
++ goto out;
++ }
++
++ *data = e1000_setup_desc_rings(adapter);
++ if (data)
++ goto out;
++
++ *data = e1000_setup_loopback_test(adapter);
++ if (data)
++ goto err_loopback;
++
++ *data = e1000_run_loopback_test(adapter);
++ e1000_loopback_cleanup(adapter);
++
++err_loopback:
++ e1000_free_desc_rings(adapter);
++out:
++ return *data;
++}
++
++static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
++{
++ struct e1000_hw *hw = &adapter->hw;
++
++ *data = 0;
++ if (hw->media_type == e1000_media_type_internal_serdes) {
++ int i = 0;
++ hw->mac.serdes_has_link = 0;
++
++ /* On some blade server designs, link establishment
++ * could take as long as 2-3 minutes */
++ do {
++ hw->mac.ops.check_for_link(hw);
++ if (hw->mac.serdes_has_link)
++ return *data;
++ msleep(20);
++ } while (i++ < 3750);
++
++ *data = 1;
++ } else {
++ hw->mac.ops.check_for_link(hw);
++ if (hw->mac.autoneg)
++ msleep(4000);
++
++ if (!(er32(STATUS) &
++ E1000_STATUS_LU))
++ *data = 1;
++ }
++ return *data;
++}
++
++static int e1000_diag_test_count(struct net_device *netdev)
++{
++ return E1000_TEST_LEN;
++}
++
++static void e1000_diag_test(struct net_device *netdev,
++ struct ethtool_test *eth_test, u64 *data)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ u16 autoneg_advertised;
++ u8 forced_speed_duplex;
++ u8 autoneg;
++ bool if_running = netif_running(netdev);
++
++ set_bit(__E1000_TESTING, &adapter->state);
++ if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
++ /* Offline tests */
++
++ /* save speed, duplex, autoneg settings */
++ autoneg_advertised = adapter->hw.phy.autoneg_advertised;
++ forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
++ autoneg = adapter->hw.mac.autoneg;
++
++ ndev_info(netdev, "offline testing starting\n");
++
++ /* Link test performed before hardware reset so autoneg doesn't
++ * interfere with test result */
++ if (e1000_link_test(adapter, &data[4]))
++ eth_test->flags |= ETH_TEST_FL_FAILED;
++
++ if (if_running)
++ /* indicate we're in test mode */
++ dev_close(netdev);
++ else
++ e1000_reset(adapter);
++
++ if (e1000_reg_test(adapter, &data[0]))
++ eth_test->flags |= ETH_TEST_FL_FAILED;
++
++ e1000_reset(adapter);
++ if (e1000_eeprom_test(adapter, &data[1]))
++ eth_test->flags |= ETH_TEST_FL_FAILED;
++
++ e1000_reset(adapter);
++ if (e1000_intr_test(adapter, &data[2]))
++ eth_test->flags |= ETH_TEST_FL_FAILED;
++
++ e1000_reset(adapter);
++ /* make sure the phy is powered up */
++ e1000_power_up_phy(adapter);
++ if (e1000_loopback_test(adapter, &data[3]))
++ eth_test->flags |= ETH_TEST_FL_FAILED;
++
++ /* restore speed, duplex, autoneg settings */
++ adapter->hw.phy.autoneg_advertised = autoneg_advertised;
++ adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
++ adapter->hw.mac.autoneg = autoneg;
++
++ /* force this routine to wait until autoneg complete/timeout */
++ adapter->hw.phy.wait_for_link = 1;
++ e1000_reset(adapter);
++ adapter->hw.phy.wait_for_link = 0;
++
++ clear_bit(__E1000_TESTING, &adapter->state);
++ if (if_running)
++ dev_open(netdev);
++ } else {
++ ndev_info(netdev, "online testing starting\n");
++ /* Online tests */
++ if (e1000_link_test(adapter, &data[4]))
++ eth_test->flags |= ETH_TEST_FL_FAILED;
++
++ /* Online tests aren't run; pass by default */
++ data[0] = 0;
++ data[1] = 0;
++ data[2] = 0;
++ data[3] = 0;
++
++ clear_bit(__E1000_TESTING, &adapter->state);
++ }
++ msleep_interruptible(4 * 1000);
++}
++
++static void e1000_get_wol(struct net_device *netdev,
++ struct ethtool_wolinfo *wol)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++
++ wol->supported = 0;
++ wol->wolopts = 0;
++
++ if (!(adapter->flags & FLAG_HAS_WOL))
++ return;
++
++ wol->supported = WAKE_UCAST | WAKE_MCAST |
++ WAKE_BCAST | WAKE_MAGIC;
++
++ /* apply any specific unsupported masks here */
++ if (adapter->flags & FLAG_NO_WAKE_UCAST) {
++ wol->supported &= ~WAKE_UCAST;
++
++ if (adapter->wol & E1000_WUFC_EX)
++ ndev_err(netdev, "Interface does not support "
++ "directed (unicast) frame wake-up packets\n");
++ }
++
++ if (adapter->wol & E1000_WUFC_EX)
++ wol->wolopts |= WAKE_UCAST;
++ if (adapter->wol & E1000_WUFC_MC)
++ wol->wolopts |= WAKE_MCAST;
++ if (adapter->wol & E1000_WUFC_BC)
++ wol->wolopts |= WAKE_BCAST;
++ if (adapter->wol & E1000_WUFC_MAG)
++ wol->wolopts |= WAKE_MAGIC;
++}
++
++static int e1000_set_wol(struct net_device *netdev,
++ struct ethtool_wolinfo *wol)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++
++ if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
++ return -EOPNOTSUPP;
++
++ if (!(adapter->flags & FLAG_HAS_WOL))
++ return wol->wolopts ? -EOPNOTSUPP : 0;
++
++ /* these settings will always override what we currently have */
++ adapter->wol = 0;
++
++ if (wol->wolopts & WAKE_UCAST)
++ adapter->wol |= E1000_WUFC_EX;
++ if (wol->wolopts & WAKE_MCAST)
++ adapter->wol |= E1000_WUFC_MC;
++ if (wol->wolopts & WAKE_BCAST)
++ adapter->wol |= E1000_WUFC_BC;
++ if (wol->wolopts & WAKE_MAGIC)
++ adapter->wol |= E1000_WUFC_MAG;
++
++ return 0;
++}
++
++/* toggle LED 4 times per second = 2 "blinks" per second */
++#define E1000_ID_INTERVAL (HZ/4)
++
++/* bit defines for adapter->led_status */
++#define E1000_LED_ON 0
++
++static void e1000_led_blink_callback(unsigned long data)
++{
++ struct e1000_adapter *adapter = (struct e1000_adapter *) data;
++
++ if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
++ adapter->hw.mac.ops.led_off(&adapter->hw);
++ else
++ adapter->hw.mac.ops.led_on(&adapter->hw);
++
++ mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
++}
++
++static int e1000_phys_id(struct net_device *netdev, u32 data)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++
++ if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
++ data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
++
++ if (adapter->hw.phy.type == e1000_phy_ife) {
++ if (!adapter->blink_timer.function) {
++ init_timer(&adapter->blink_timer);
++ adapter->blink_timer.function =
++ e1000_led_blink_callback;
++ adapter->blink_timer.data = (unsigned long) adapter;
++ }
++ mod_timer(&adapter->blink_timer, jiffies);
++ msleep_interruptible(data * 1000);
++ del_timer_sync(&adapter->blink_timer);
++ e1e_wphy(&adapter->hw,
++ IFE_PHY_SPECIAL_CONTROL_LED, 0);
++ } else {
++ e1000_blink_led(&adapter->hw);
++ msleep_interruptible(data * 1000);
++ }
++
++ adapter->hw.mac.ops.led_off(&adapter->hw);
++ clear_bit(E1000_LED_ON, &adapter->led_status);
++ adapter->hw.mac.ops.cleanup_led(&adapter->hw);
++
++ return 0;
++}
++
++static int e1000_nway_reset(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ if (netif_running(netdev))
++ e1000_reinit_locked(adapter);
++ return 0;
++}
++
++static int e1000_get_stats_count(struct net_device *netdev)
++{
++ return E1000_STATS_LEN;
++}
++
++static void e1000_get_ethtool_stats(struct net_device *netdev,
++ struct ethtool_stats *stats,
++ u64 *data)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ int i;
++
++ e1000_update_stats(adapter);
++ for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
++ char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
++ data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
++ sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
++ }
++}
++
++static void e1000_get_strings(struct net_device *netdev, u32 stringset,
++ u8 *data)
++{
++ u8 *p = data;
++ int i;
++
++ switch (stringset) {
++ case ETH_SS_TEST:
++ memcpy(data, *e1000_gstrings_test,
++ E1000_TEST_LEN*ETH_GSTRING_LEN);
++ break;
++ case ETH_SS_STATS:
++ for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
++ memcpy(p, e1000_gstrings_stats[i].stat_string,
++ ETH_GSTRING_LEN);
++ p += ETH_GSTRING_LEN;
++ }
++ break;
++ }
++}
++
++static const struct ethtool_ops e1000_ethtool_ops = {
++ .get_settings = e1000_get_settings,
++ .set_settings = e1000_set_settings,
++ .get_drvinfo = e1000_get_drvinfo,
++ .get_regs_len = e1000_get_regs_len,
++ .get_regs = e1000_get_regs,
++ .get_wol = e1000_get_wol,
++ .set_wol = e1000_set_wol,
++ .get_msglevel = e1000_get_msglevel,
++ .set_msglevel = e1000_set_msglevel,
++ .nway_reset = e1000_nway_reset,
++ .get_link = ethtool_op_get_link,
++ .get_eeprom_len = e1000_get_eeprom_len,
++ .get_eeprom = e1000_get_eeprom,
++ .set_eeprom = e1000_set_eeprom,
++ .get_ringparam = e1000_get_ringparam,
++ .set_ringparam = e1000_set_ringparam,
++ .get_pauseparam = e1000_get_pauseparam,
++ .set_pauseparam = e1000_set_pauseparam,
++ .get_rx_csum = e1000_get_rx_csum,
++ .set_rx_csum = e1000_set_rx_csum,
++ .get_tx_csum = e1000_get_tx_csum,
++ .set_tx_csum = e1000_set_tx_csum,
++ .get_sg = ethtool_op_get_sg,
++ .set_sg = ethtool_op_set_sg,
++ .get_tso = ethtool_op_get_tso,
++ .set_tso = e1000_set_tso,
++ .self_test_count = e1000_diag_test_count,
++ .self_test = e1000_diag_test,
++ .get_strings = e1000_get_strings,
++ .phys_id = e1000_phys_id,
++ .get_stats_count = e1000_get_stats_count,
++ .get_ethtool_stats = e1000_get_ethtool_stats,
++};
++
++void e1000_set_ethtool_ops(struct net_device *netdev)
++{
++ SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
++}
+diff --git a/drivers/net/e1000e/hw.h b/drivers/net/e1000e/hw.h
+new file mode 100644
+index 0000000..4d562c4
+--- /dev/null
++++ b/drivers/net/e1000e/hw.h
+@@ -0,0 +1,862 @@
++/*******************************************************************************
++
++ Intel PRO/1000 Linux driver
++ Copyright(c) 1999 - 2007 Intel Corporation.
++
++ This program is free software; you can redistribute it and/or modify it
++ under the terms and conditions of the GNU General Public License,
++ version 2, as published by the Free Software Foundation.
++
++ This program is distributed in the hope it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
++ more details.
++
++ You should have received a copy of the GNU General Public License along with
++ this program; if not, write to the Free Software Foundation, Inc.,
++ 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++ The full GNU General Public License is included in this distribution in
++ the file called "COPYING".
++
++ Contact Information:
++ Linux NICS <linux.nics@intel.com>
++ e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
++ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++#ifndef _E1000_HW_H_
++#define _E1000_HW_H_
++
++struct e1000_hw;
++struct e1000_adapter;
++
++#include "defines.h"
++
++#define er32(reg) __er32(hw, E1000_##reg)
++#define ew32(reg,val) __ew32(hw, E1000_##reg, (val))
++#define e1e_flush() er32(STATUS)
++
++#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
++ (writel((value), ((a)->hw_addr + reg + ((offset) << 2))))
++
++#define E1000_READ_REG_ARRAY(a, reg, offset) \
++ (readl((a)->hw_addr + reg + ((offset) << 2)))
++
++enum e1e_registers {
++ E1000_CTRL = 0x00000, /* Device Control - RW */
++ E1000_STATUS = 0x00008, /* Device Status - RO */
++ E1000_EECD = 0x00010, /* EEPROM/Flash Control - RW */
++ E1000_EERD = 0x00014, /* EEPROM Read - RW */
++ E1000_CTRL_EXT = 0x00018, /* Extended Device Control - RW */
++ E1000_FLA = 0x0001C, /* Flash Access - RW */
++ E1000_MDIC = 0x00020, /* MDI Control - RW */
++ E1000_SCTL = 0x00024, /* SerDes Control - RW */
++ E1000_FCAL = 0x00028, /* Flow Control Address Low - RW */
++ E1000_FCAH = 0x0002C, /* Flow Control Address High -RW */
++ E1000_FEXTNVM = 0x00028, /* Future Extended NVM - RW */
++ E1000_FCT = 0x00030, /* Flow Control Type - RW */
++ E1000_VET = 0x00038, /* VLAN Ether Type - RW */
++ E1000_ICR = 0x000C0, /* Interrupt Cause Read - R/clr */
++ E1000_ITR = 0x000C4, /* Interrupt Throttling Rate - RW */
++ E1000_ICS = 0x000C8, /* Interrupt Cause Set - WO */
++ E1000_IMS = 0x000D0, /* Interrupt Mask Set - RW */
++ E1000_IMC = 0x000D8, /* Interrupt Mask Clear - WO */
++ E1000_IAM = 0x000E0, /* Interrupt Acknowledge Auto Mask */
++ E1000_RCTL = 0x00100, /* RX Control - RW */
++ E1000_FCTTV = 0x00170, /* Flow Control Transmit Timer Value - RW */
++ E1000_TXCW = 0x00178, /* TX Configuration Word - RW */
++ E1000_RXCW = 0x00180, /* RX Configuration Word - RO */
++ E1000_TCTL = 0x00400, /* TX Control - RW */
++ E1000_TCTL_EXT = 0x00404, /* Extended TX Control - RW */
++ E1000_TIPG = 0x00410, /* TX Inter-packet gap -RW */
++ E1000_AIT = 0x00458, /* Adaptive Interframe Spacing Throttle - RW */
++ E1000_LEDCTL = 0x00E00, /* LED Control - RW */
++ E1000_EXTCNF_CTRL = 0x00F00, /* Extended Configuration Control */
++ E1000_EXTCNF_SIZE = 0x00F08, /* Extended Configuration Size */
++ E1000_PHY_CTRL = 0x00F10, /* PHY Control Register in CSR */
++ E1000_PBA = 0x01000, /* Packet Buffer Allocation - RW */
++ E1000_PBS = 0x01008, /* Packet Buffer Size */
++ E1000_EEMNGCTL = 0x01010, /* MNG EEprom Control */
++ E1000_EEWR = 0x0102C, /* EEPROM Write Register - RW */
++ E1000_FLOP = 0x0103C, /* FLASH Opcode Register */
++ E1000_ERT = 0x02008, /* Early Rx Threshold - RW */
++ E1000_FCRTL = 0x02160, /* Flow Control Receive Threshold Low - RW */
++ E1000_FCRTH = 0x02168, /* Flow Control Receive Threshold High - RW */
++ E1000_PSRCTL = 0x02170, /* Packet Split Receive Control - RW */
++ E1000_RDBAL = 0x02800, /* RX Descriptor Base Address Low - RW */
++ E1000_RDBAH = 0x02804, /* RX Descriptor Base Address High - RW */
++ E1000_RDLEN = 0x02808, /* RX Descriptor Length - RW */
++ E1000_RDH = 0x02810, /* RX Descriptor Head - RW */
++ E1000_RDT = 0x02818, /* RX Descriptor Tail - RW */
++ E1000_RDTR = 0x02820, /* RX Delay Timer - RW */
++ E1000_RADV = 0x0282C, /* RX Interrupt Absolute Delay Timer - RW */
++
++/* Convenience macros
++ *
++ * Note: "_n" is the queue number of the register to be written to.
++ *
++ * Example usage:
++ * E1000_RDBAL_REG(current_rx_queue)
++ *
++ */
++#define E1000_RDBAL_REG(_n) (E1000_RDBAL + (_n << 8))
++ E1000_KABGTXD = 0x03004, /* AFE Band Gap Transmit Ref Data */
++ E1000_TDBAL = 0x03800, /* TX Descriptor Base Address Low - RW */
++ E1000_TDBAH = 0x03804, /* TX Descriptor Base Address High - RW */
++ E1000_TDLEN = 0x03808, /* TX Descriptor Length - RW */
++ E1000_TDH = 0x03810, /* TX Descriptor Head - RW */
++ E1000_TDT = 0x03818, /* TX Descriptor Tail - RW */
++ E1000_TIDV = 0x03820, /* TX Interrupt Delay Value - RW */
++ E1000_TXDCTL = 0x03828, /* TX Descriptor Control - RW */
++ E1000_TADV = 0x0382C, /* TX Interrupt Absolute Delay Val - RW */
++ E1000_TARC0 = 0x03840, /* TX Arbitration Count (0) */
++ E1000_TXDCTL1 = 0x03928, /* TX Descriptor Control (1) - RW */
++ E1000_TARC1 = 0x03940, /* TX Arbitration Count (1) */
++ E1000_CRCERRS = 0x04000, /* CRC Error Count - R/clr */
++ E1000_ALGNERRC = 0x04004, /* Alignment Error Count - R/clr */
++ E1000_SYMERRS = 0x04008, /* Symbol Error Count - R/clr */
++ E1000_RXERRC = 0x0400C, /* Receive Error Count - R/clr */
++ E1000_MPC = 0x04010, /* Missed Packet Count - R/clr */
++ E1000_SCC = 0x04014, /* Single Collision Count - R/clr */
++ E1000_ECOL = 0x04018, /* Excessive Collision Count - R/clr */
++ E1000_MCC = 0x0401C, /* Multiple Collision Count - R/clr */
++ E1000_LATECOL = 0x04020, /* Late Collision Count - R/clr */
++ E1000_COLC = 0x04028, /* Collision Count - R/clr */
++ E1000_DC = 0x04030, /* Defer Count - R/clr */
++ E1000_TNCRS = 0x04034, /* TX-No CRS - R/clr */
++ E1000_SEC = 0x04038, /* Sequence Error Count - R/clr */
++ E1000_CEXTERR = 0x0403C, /* Carrier Extension Error Count - R/clr */
++ E1000_RLEC = 0x04040, /* Receive Length Error Count - R/clr */
++ E1000_XONRXC = 0x04048, /* XON RX Count - R/clr */
++ E1000_XONTXC = 0x0404C, /* XON TX Count - R/clr */
++ E1000_XOFFRXC = 0x04050, /* XOFF RX Count - R/clr */
++ E1000_XOFFTXC = 0x04054, /* XOFF TX Count - R/clr */
++ E1000_FCRUC = 0x04058, /* Flow Control RX Unsupported Count- R/clr */
++ E1000_PRC64 = 0x0405C, /* Packets RX (64 bytes) - R/clr */
++ E1000_PRC127 = 0x04060, /* Packets RX (65-127 bytes) - R/clr */
++ E1000_PRC255 = 0x04064, /* Packets RX (128-255 bytes) - R/clr */
++ E1000_PRC511 = 0x04068, /* Packets RX (255-511 bytes) - R/clr */
++ E1000_PRC1023 = 0x0406C, /* Packets RX (512-1023 bytes) - R/clr */
++ E1000_PRC1522 = 0x04070, /* Packets RX (1024-1522 bytes) - R/clr */
++ E1000_GPRC = 0x04074, /* Good Packets RX Count - R/clr */
++ E1000_BPRC = 0x04078, /* Broadcast Packets RX Count - R/clr */
++ E1000_MPRC = 0x0407C, /* Multicast Packets RX Count - R/clr */
++ E1000_GPTC = 0x04080, /* Good Packets TX Count - R/clr */
++ E1000_GORCL = 0x04088, /* Good Octets RX Count Low - R/clr */
++ E1000_GORCH = 0x0408C, /* Good Octets RX Count High - R/clr */
++ E1000_GOTCL = 0x04090, /* Good Octets TX Count Low - R/clr */
++ E1000_GOTCH = 0x04094, /* Good Octets TX Count High - R/clr */
++ E1000_RNBC = 0x040A0, /* RX No Buffers Count - R/clr */
++ E1000_RUC = 0x040A4, /* RX Undersize Count - R/clr */
++ E1000_RFC = 0x040A8, /* RX Fragment Count - R/clr */
++ E1000_ROC = 0x040AC, /* RX Oversize Count - R/clr */
++ E1000_RJC = 0x040B0, /* RX Jabber Count - R/clr */
++ E1000_MGTPRC = 0x040B4, /* Management Packets RX Count - R/clr */
++ E1000_MGTPDC = 0x040B8, /* Management Packets Dropped Count - R/clr */
++ E1000_MGTPTC = 0x040BC, /* Management Packets TX Count - R/clr */
++ E1000_TORL = 0x040C0, /* Total Octets RX Low - R/clr */
++ E1000_TORH = 0x040C4, /* Total Octets RX High - R/clr */
++ E1000_TOTL = 0x040C8, /* Total Octets TX Low - R/clr */
++ E1000_TOTH = 0x040CC, /* Total Octets TX High - R/clr */
++ E1000_TPR = 0x040D0, /* Total Packets RX - R/clr */
++ E1000_TPT = 0x040D4, /* Total Packets TX - R/clr */
++ E1000_PTC64 = 0x040D8, /* Packets TX (64 bytes) - R/clr */
++ E1000_PTC127 = 0x040DC, /* Packets TX (65-127 bytes) - R/clr */
++ E1000_PTC255 = 0x040E0, /* Packets TX (128-255 bytes) - R/clr */
++ E1000_PTC511 = 0x040E4, /* Packets TX (256-511 bytes) - R/clr */
++ E1000_PTC1023 = 0x040E8, /* Packets TX (512-1023 bytes) - R/clr */
++ E1000_PTC1522 = 0x040EC, /* Packets TX (1024-1522 Bytes) - R/clr */
++ E1000_MPTC = 0x040F0, /* Multicast Packets TX Count - R/clr */
++ E1000_BPTC = 0x040F4, /* Broadcast Packets TX Count - R/clr */
++ E1000_TSCTC = 0x040F8, /* TCP Segmentation Context TX - R/clr */
++ E1000_TSCTFC = 0x040FC, /* TCP Segmentation Context TX Fail - R/clr */
++ E1000_IAC = 0x04100, /* Interrupt Assertion Count */
++ E1000_ICRXPTC = 0x04104, /* Irq Cause Rx Packet Timer Expire Count */
++ E1000_ICRXATC = 0x04108, /* Irq Cause Rx Abs Timer Expire Count */
++ E1000_ICTXPTC = 0x0410C, /* Irq Cause Tx Packet Timer Expire Count */
++ E1000_ICTXATC = 0x04110, /* Irq Cause Tx Abs Timer Expire Count */
++ E1000_ICTXQEC = 0x04118, /* Irq Cause Tx Queue Empty Count */
++ E1000_ICTXQMTC = 0x0411C, /* Irq Cause Tx Queue MinThreshold Count */
++ E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */
++ E1000_ICRXOC = 0x04124, /* Irq Cause Receiver Overrun Count */
++ E1000_RXCSUM = 0x05000, /* RX Checksum Control - RW */
++ E1000_RFCTL = 0x05008, /* Receive Filter Control*/
++ E1000_MTA = 0x05200, /* Multicast Table Array - RW Array */
++ E1000_RA = 0x05400, /* Receive Address - RW Array */
++ E1000_VFTA = 0x05600, /* VLAN Filter Table Array - RW Array */
++ E1000_WUC = 0x05800, /* Wakeup Control - RW */
++ E1000_WUFC = 0x05808, /* Wakeup Filter Control - RW */
++ E1000_WUS = 0x05810, /* Wakeup Status - RO */
++ E1000_MANC = 0x05820, /* Management Control - RW */
++ E1000_FFLT = 0x05F00, /* Flexible Filter Length Table - RW Array */
++ E1000_HOST_IF = 0x08800, /* Host Interface */
++
++ E1000_KMRNCTRLSTA = 0x00034, /* MAC-PHY interface - RW */
++ E1000_MANC2H = 0x05860, /* Management Control To Host - RW */
++ E1000_SW_FW_SYNC = 0x05B5C, /* Software-Firmware Synchronization - RW */
++ E1000_GCR = 0x05B00, /* PCI-Ex Control */
++ E1000_FACTPS = 0x05B30, /* Function Active and Power State to MNG */
++ E1000_SWSM = 0x05B50, /* SW Semaphore */
++ E1000_FWSM = 0x05B54, /* FW Semaphore */
++ E1000_HICR = 0x08F00, /* Host Inteface Control */
++};
++
++/* RSS registers */
++
++/* IGP01E1000 Specific Registers */
++#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
++#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
++#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
++#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
++#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
++#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
++
++#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
++#define IGP01E1000_PHY_POLARITY_MASK 0x0078
++
++#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
++#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
++
++#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
++
++#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
++#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
++#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
++
++#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
++
++#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
++#define IGP01E1000_PSSR_MDIX 0x0008
++#define IGP01E1000_PSSR_SPEED_MASK 0xC000
++#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
++
++#define IGP02E1000_PHY_CHANNEL_NUM 4
++#define IGP02E1000_PHY_AGC_A 0x11B1
++#define IGP02E1000_PHY_AGC_B 0x12B1
++#define IGP02E1000_PHY_AGC_C 0x14B1
++#define IGP02E1000_PHY_AGC_D 0x18B1
++
++#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */
++#define IGP02E1000_AGC_LENGTH_MASK 0x7F
++#define IGP02E1000_AGC_RANGE 15
++
++/* manage.c */
++#define E1000_VFTA_ENTRY_SHIFT 5
++#define E1000_VFTA_ENTRY_MASK 0x7F
++#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
++
++#define E1000_HICR_EN 0x01 /* Enable bit - RO */
++#define E1000_HICR_C 0x02 /* Driver sets this bit when done
++ * to put command in RAM */
++#define E1000_HICR_FW_RESET_ENABLE 0x40
++#define E1000_HICR_FW_RESET 0x80
++
++#define E1000_FWSM_MODE_MASK 0xE
++#define E1000_FWSM_MODE_SHIFT 1
++
++#define E1000_MNG_IAMT_MODE 0x3
++#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10
++#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0
++#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
++#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
++#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
++#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
++
++/* nvm.c */
++#define E1000_STM_OPCODE 0xDB00
++
++#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000
++#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16
++#define E1000_KMRNCTRLSTA_REN 0x00200000
++#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */
++#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */
++
++#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
++#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */
++#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */
++#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
++
++/* IFE PHY Extended Status Control */
++#define IFE_PESC_POLARITY_REVERSED 0x0100
++
++/* IFE PHY Special Control */
++#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010
++#define IFE_PSC_FORCE_POLARITY 0x0020
++
++/* IFE PHY Special Control and LED Control */
++#define IFE_PSCL_PROBE_MODE 0x0020
++#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
++#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
++
++/* IFE PHY MDIX Control */
++#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
++#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */
++#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
++
++#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
++
++#define E1000_DEV_ID_82571EB_COPPER 0x105E
++#define E1000_DEV_ID_82571EB_FIBER 0x105F
++#define E1000_DEV_ID_82571EB_SERDES 0x1060
++#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
++#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5
++#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC
++#define E1000_DEV_ID_82572EI_COPPER 0x107D
++#define E1000_DEV_ID_82572EI_FIBER 0x107E
++#define E1000_DEV_ID_82572EI_SERDES 0x107F
++#define E1000_DEV_ID_82572EI 0x10B9
++#define E1000_DEV_ID_82573E 0x108B
++#define E1000_DEV_ID_82573E_IAMT 0x108C
++#define E1000_DEV_ID_82573L 0x109A
++
++#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
++#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
++#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
++#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
++
++#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
++#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
++#define E1000_DEV_ID_ICH8_IGP_C 0x104B
++#define E1000_DEV_ID_ICH8_IFE 0x104C
++#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4
++#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
++#define E1000_DEV_ID_ICH8_IGP_M 0x104D
++#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD
++#define E1000_DEV_ID_ICH9_IGP_C 0x294C
++#define E1000_DEV_ID_ICH9_IFE 0x10C0
++#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3
++#define E1000_DEV_ID_ICH9_IFE_G 0x10C2
++
++#define E1000_FUNC_1 1
++
++enum e1000_mac_type {
++ e1000_82571,
++ e1000_82572,
++ e1000_82573,
++ e1000_80003es2lan,
++ e1000_ich8lan,
++ e1000_ich9lan,
++};
++
++enum e1000_media_type {
++ e1000_media_type_unknown = 0,
++ e1000_media_type_copper = 1,
++ e1000_media_type_fiber = 2,
++ e1000_media_type_internal_serdes = 3,
++ e1000_num_media_types
++};
++
++enum e1000_nvm_type {
++ e1000_nvm_unknown = 0,
++ e1000_nvm_none,
++ e1000_nvm_eeprom_spi,
++ e1000_nvm_flash_hw,
++ e1000_nvm_flash_sw
++};
++
++enum e1000_nvm_override {
++ e1000_nvm_override_none = 0,
++ e1000_nvm_override_spi_small,
++ e1000_nvm_override_spi_large
++};
++
++enum e1000_phy_type {
++ e1000_phy_unknown = 0,
++ e1000_phy_none,
++ e1000_phy_m88,
++ e1000_phy_igp,
++ e1000_phy_igp_2,
++ e1000_phy_gg82563,
++ e1000_phy_igp_3,
++ e1000_phy_ife,
++};
++
++enum e1000_bus_width {
++ e1000_bus_width_unknown = 0,
++ e1000_bus_width_pcie_x1,
++ e1000_bus_width_pcie_x2,
++ e1000_bus_width_pcie_x4 = 4,
++ e1000_bus_width_32,
++ e1000_bus_width_64,
++ e1000_bus_width_reserved
++};
++
++enum e1000_1000t_rx_status {
++ e1000_1000t_rx_status_not_ok = 0,
++ e1000_1000t_rx_status_ok,
++ e1000_1000t_rx_status_undefined = 0xFF
++};
++
++enum e1000_rev_polarity{
++ e1000_rev_polarity_normal = 0,
++ e1000_rev_polarity_reversed,
++ e1000_rev_polarity_undefined = 0xFF
++};
++
++enum e1000_fc_mode {
++ e1000_fc_none = 0,
++ e1000_fc_rx_pause,
++ e1000_fc_tx_pause,
++ e1000_fc_full,
++ e1000_fc_default = 0xFF
++};
++
++enum e1000_ms_type {
++ e1000_ms_hw_default = 0,
++ e1000_ms_force_master,
++ e1000_ms_force_slave,
++ e1000_ms_auto
++};
++
++enum e1000_smart_speed {
++ e1000_smart_speed_default = 0,
++ e1000_smart_speed_on,
++ e1000_smart_speed_off
++};
++
++/* Receive Descriptor */
++struct e1000_rx_desc {
++ u64 buffer_addr; /* Address of the descriptor's data buffer */
++ u16 length; /* Length of data DMAed into data buffer */
++ u16 csum; /* Packet checksum */
++ u8 status; /* Descriptor status */
++ u8 errors; /* Descriptor Errors */
++ u16 special;
++};
++
++/* Receive Descriptor - Extended */
++union e1000_rx_desc_extended {
++ struct {
++ u64 buffer_addr;
++ u64 reserved;
++ } read;
++ struct {
++ struct {
++ u32 mrq; /* Multiple Rx Queues */
++ union {
++ u32 rss; /* RSS Hash */
++ struct {
++ u16 ip_id; /* IP id */
++ u16 csum; /* Packet Checksum */
++ } csum_ip;
++ } hi_dword;
++ } lower;
++ struct {
++ u32 status_error; /* ext status/error */
++ u16 length;
++ u16 vlan; /* VLAN tag */
++ } upper;
++ } wb; /* writeback */
++};
++
++#define MAX_PS_BUFFERS 4
++/* Receive Descriptor - Packet Split */
++union e1000_rx_desc_packet_split {
++ struct {
++ /* one buffer for protocol header(s), three data buffers */
++ u64 buffer_addr[MAX_PS_BUFFERS];
++ } read;
++ struct {
++ struct {
++ u32 mrq; /* Multiple Rx Queues */
++ union {
++ u32 rss; /* RSS Hash */
++ struct {
++ u16 ip_id; /* IP id */
++ u16 csum; /* Packet Checksum */
++ } csum_ip;
++ } hi_dword;
++ } lower;
++ struct {
++ u32 status_error; /* ext status/error */
++ u16 length0; /* length of buffer 0 */
++ u16 vlan; /* VLAN tag */
++ } middle;
++ struct {
++ u16 header_status;
++ u16 length[3]; /* length of buffers 1-3 */
++ } upper;
++ u64 reserved;
++ } wb; /* writeback */
++};
++
++/* Transmit Descriptor */
++struct e1000_tx_desc {
++ u64 buffer_addr; /* Address of the descriptor's data buffer */
++ union {
++ u32 data;
++ struct {
++ u16 length; /* Data buffer length */
++ u8 cso; /* Checksum offset */
++ u8 cmd; /* Descriptor control */
++ } flags;
++ } lower;
++ union {
++ u32 data;
++ struct {
++ u8 status; /* Descriptor status */
++ u8 css; /* Checksum start */
++ u16 special;
++ } fields;
++ } upper;
++};
++
++/* Offload Context Descriptor */
++struct e1000_context_desc {
++ union {
++ u32 ip_config;
++ struct {
++ u8 ipcss; /* IP checksum start */
++ u8 ipcso; /* IP checksum offset */
++ u16 ipcse; /* IP checksum end */
++ } ip_fields;
++ } lower_setup;
++ union {
++ u32 tcp_config;
++ struct {
++ u8 tucss; /* TCP checksum start */
++ u8 tucso; /* TCP checksum offset */
++ u16 tucse; /* TCP checksum end */
++ } tcp_fields;
++ } upper_setup;
++ u32 cmd_and_length;
++ union {
++ u32 data;
++ struct {
++ u8 status; /* Descriptor status */
++ u8 hdr_len; /* Header length */
++ u16 mss; /* Maximum segment size */
++ } fields;
++ } tcp_seg_setup;
++};
++
++/* Offload data descriptor */
++struct e1000_data_desc {
++ u64 buffer_addr; /* Address of the descriptor's buffer address */
++ union {
++ u32 data;
++ struct {
++ u16 length; /* Data buffer length */
++ u8 typ_len_ext;
++ u8 cmd;
++ } flags;
++ } lower;
++ union {
++ u32 data;
++ struct {
++ u8 status; /* Descriptor status */
++ u8 popts; /* Packet Options */
++ u16 special; /* */
++ } fields;
++ } upper;
++};
++
++/* Statistics counters collected by the MAC */
++struct e1000_hw_stats {
++ u64 crcerrs;
++ u64 algnerrc;
++ u64 symerrs;
++ u64 rxerrc;
++ u64 mpc;
++ u64 scc;
++ u64 ecol;
++ u64 mcc;
++ u64 latecol;
++ u64 colc;
++ u64 dc;
++ u64 tncrs;
++ u64 sec;
++ u64 cexterr;
++ u64 rlec;
++ u64 xonrxc;
++ u64 xontxc;
++ u64 xoffrxc;
++ u64 xofftxc;
++ u64 fcruc;
++ u64 prc64;
++ u64 prc127;
++ u64 prc255;
++ u64 prc511;
++ u64 prc1023;
++ u64 prc1522;
++ u64 gprc;
++ u64 bprc;
++ u64 mprc;
++ u64 gptc;
++ u64 gorcl;
++ u64 gorch;
++ u64 gotcl;
++ u64 gotch;
++ u64 rnbc;
++ u64 ruc;
++ u64 rfc;
++ u64 roc;
++ u64 rjc;
++ u64 mgprc;
++ u64 mgpdc;
++ u64 mgptc;
++ u64 torl;
++ u64 torh;
++ u64 totl;
++ u64 toth;
++ u64 tpr;
++ u64 tpt;
++ u64 ptc64;
++ u64 ptc127;
++ u64 ptc255;
++ u64 ptc511;
++ u64 ptc1023;
++ u64 ptc1522;
++ u64 mptc;
++ u64 bptc;
++ u64 tsctc;
++ u64 tsctfc;
++ u64 iac;
++ u64 icrxptc;
++ u64 icrxatc;
++ u64 ictxptc;
++ u64 ictxatc;
++ u64 ictxqec;
++ u64 ictxqmtc;
++ u64 icrxdmtc;
++ u64 icrxoc;
++};
++
++struct e1000_phy_stats {
++ u32 idle_errors;
++ u32 receive_errors;
++};
++
++struct e1000_host_mng_dhcp_cookie {
++ u32 signature;
++ u8 status;
++ u8 reserved0;
++ u16 vlan_id;
++ u32 reserved1;
++ u16 reserved2;
++ u8 reserved3;
++ u8 checksum;
++};
++
++/* Host Interface "Rev 1" */
++struct e1000_host_command_header {
++ u8 command_id;
++ u8 command_length;
++ u8 command_options;
++ u8 checksum;
++};
++
++#define E1000_HI_MAX_DATA_LENGTH 252
++struct e1000_host_command_info {
++ struct e1000_host_command_header command_header;
++ u8 command_data[E1000_HI_MAX_DATA_LENGTH];
++};
++
++/* Host Interface "Rev 2" */
++struct e1000_host_mng_command_header {
++ u8 command_id;
++ u8 checksum;
++ u16 reserved1;
++ u16 reserved2;
++ u16 command_length;
++};
++
++#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
++struct e1000_host_mng_command_info {
++ struct e1000_host_mng_command_header command_header;
++ u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
++};
++
++/* Function pointers and static data for the MAC. */
++struct e1000_mac_operations {
++ u32 mng_mode_enab;
++
++ s32 (*check_for_link)(struct e1000_hw *);
++ s32 (*cleanup_led)(struct e1000_hw *);
++ void (*clear_hw_cntrs)(struct e1000_hw *);
++ s32 (*get_bus_info)(struct e1000_hw *);
++ s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
++ s32 (*led_on)(struct e1000_hw *);
++ s32 (*led_off)(struct e1000_hw *);
++ void (*mc_addr_list_update)(struct e1000_hw *, u8 *, u32, u32,
++ u32);
++ s32 (*reset_hw)(struct e1000_hw *);
++ s32 (*init_hw)(struct e1000_hw *);
++ s32 (*setup_link)(struct e1000_hw *);
++ s32 (*setup_physical_interface)(struct e1000_hw *);
++};
++
++/* Function pointers for the PHY. */
++struct e1000_phy_operations {
++ s32 (*acquire_phy)(struct e1000_hw *);
++ s32 (*check_reset_block)(struct e1000_hw *);
++ s32 (*commit_phy)(struct e1000_hw *);
++ s32 (*force_speed_duplex)(struct e1000_hw *);
++ s32 (*get_cfg_done)(struct e1000_hw *hw);
++ s32 (*get_cable_length)(struct e1000_hw *);
++ s32 (*get_phy_info)(struct e1000_hw *);
++ s32 (*read_phy_reg)(struct e1000_hw *, u32, u16 *);
++ void (*release_phy)(struct e1000_hw *);
++ s32 (*reset_phy)(struct e1000_hw *);
++ s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
++ s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
++ s32 (*write_phy_reg)(struct e1000_hw *, u32, u16);
++};
++
++/* Function pointers for the NVM. */
++struct e1000_nvm_operations {
++ s32 (*acquire_nvm)(struct e1000_hw *);
++ s32 (*read_nvm)(struct e1000_hw *, u16, u16, u16 *);
++ void (*release_nvm)(struct e1000_hw *);
++ s32 (*update_nvm)(struct e1000_hw *);
++ s32 (*valid_led_default)(struct e1000_hw *, u16 *);
++ s32 (*validate_nvm)(struct e1000_hw *);
++ s32 (*write_nvm)(struct e1000_hw *, u16, u16, u16 *);
++};
++
++struct e1000_mac_info {
++ struct e1000_mac_operations ops;
++
++ u8 addr[6];
++ u8 perm_addr[6];
++
++ enum e1000_mac_type type;
++ enum e1000_fc_mode fc;
++ enum e1000_fc_mode original_fc;
++
++ u32 collision_delta;
++ u32 ledctl_default;
++ u32 ledctl_mode1;
++ u32 ledctl_mode2;
++ u32 max_frame_size;
++ u32 mc_filter_type;
++ u32 min_frame_size;
++ u32 tx_packet_delta;
++ u32 txcw;
++
++ u16 current_ifs_val;
++ u16 ifs_max_val;
++ u16 ifs_min_val;
++ u16 ifs_ratio;
++ u16 ifs_step_size;
++ u16 mta_reg_count;
++ u16 rar_entry_count;
++ u16 fc_high_water;
++ u16 fc_low_water;
++ u16 fc_pause_time;
++
++ u8 forced_speed_duplex;
++
++ bool arc_subsystem_valid;
++ bool autoneg;
++ bool autoneg_failed;
++ bool get_link_status;
++ bool in_ifs_mode;
++ bool serdes_has_link;
++ bool tx_pkt_filtering;
++};
++
++struct e1000_phy_info {
++ struct e1000_phy_operations ops;
++
++ enum e1000_phy_type type;
++
++ enum e1000_1000t_rx_status local_rx;
++ enum e1000_1000t_rx_status remote_rx;
++ enum e1000_ms_type ms_type;
++ enum e1000_ms_type original_ms_type;
++ enum e1000_rev_polarity cable_polarity;
++ enum e1000_smart_speed smart_speed;
++
++ u32 addr;
++ u32 id;
++ u32 reset_delay_us; /* in usec */
++ u32 revision;
++
++ u16 autoneg_advertised;
++ u16 autoneg_mask;
++ u16 cable_length;
++ u16 max_cable_length;
++ u16 min_cable_length;
++
++ u8 mdix;
++
++ bool disable_polarity_correction;
++ bool is_mdix;
++ bool polarity_correction;
++ bool speed_downgraded;
++ bool wait_for_link;
++};
++
++struct e1000_nvm_info {
++ struct e1000_nvm_operations ops;
++
++ enum e1000_nvm_type type;
++ enum e1000_nvm_override override;
++
++ u32 flash_bank_size;
++ u32 flash_base_addr;
++
++ u16 word_size;
++ u16 delay_usec;
++ u16 address_bits;
++ u16 opcode_bits;
++ u16 page_size;
++};
++
++struct e1000_bus_info {
++ enum e1000_bus_width width;
++
++ u16 func;
++};
++
++struct e1000_dev_spec_82571 {
++ bool laa_is_present;
++};
++
++struct e1000_shadow_ram {
++ u16 value;
++ bool modified;
++};
++
++#define E1000_ICH8_SHADOW_RAM_WORDS 2048
++
++struct e1000_dev_spec_ich8lan {
++ bool kmrn_lock_loss_workaround_enabled;
++ struct e1000_shadow_ram shadow_ram[E1000_ICH8_SHADOW_RAM_WORDS];
++};
++
++struct e1000_hw {
++ struct e1000_adapter *adapter;
++
++ u8 __iomem *hw_addr;
++ u8 __iomem *flash_address;
++
++ struct e1000_mac_info mac;
++ struct e1000_phy_info phy;
++ struct e1000_nvm_info nvm;
++ struct e1000_bus_info bus;
++ struct e1000_host_mng_dhcp_cookie mng_cookie;
++
++ union {
++ struct e1000_dev_spec_82571 e82571;
++ struct e1000_dev_spec_ich8lan ich8lan;
++ } dev_spec;
++
++ enum e1000_media_type media_type;
++};
++
++#ifdef DEBUG
++#define hw_dbg(hw, format, arg...) \
++ printk(KERN_DEBUG, "%s: " format, e1000_get_hw_dev_name(hw), ##arg);
++#else
++static inline int __attribute__ ((format (printf, 2, 3)))
++hw_dbg(struct e1000_hw *hw, const char *format, ...)
++{
++ return 0;
++}
++#endif
++
++#endif
+diff --git a/drivers/net/e1000e/ich8lan.c b/drivers/net/e1000e/ich8lan.c
+new file mode 100644
+index 0000000..5967139
+--- /dev/null
++++ b/drivers/net/e1000e/ich8lan.c
+@@ -0,0 +1,2297 @@
++/*******************************************************************************
++
++ Intel PRO/1000 Linux driver
++ Copyright(c) 1999 - 2007 Intel Corporation.
++
++ This program is free software; you can redistribute it and/or modify it
++ under the terms and conditions of the GNU General Public License,
++ version 2, as published by the Free Software Foundation.
++
++ This program is distributed in the hope it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
++ more details.
++
++ You should have received a copy of the GNU General Public License along with
++ this program; if not, write to the Free Software Foundation, Inc.,
++ 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++ The full GNU General Public License is included in this distribution in
++ the file called "COPYING".
++
++ Contact Information:
++ Linux NICS <linux.nics@intel.com>
++ e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
++ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++/*
++ * 82562G-2 10/100 Network Connection
++ * 82562GT 10/100 Network Connection
++ * 82562GT-2 10/100 Network Connection
++ * 82562V 10/100 Network Connection
++ * 82562V-2 10/100 Network Connection
++ * 82566DC-2 Gigabit Network Connection
++ * 82566DC Gigabit Network Connection
++ * 82566DM-2 Gigabit Network Connection
++ * 82566DM Gigabit Network Connection
++ * 82566MC Gigabit Network Connection
++ * 82566MM Gigabit Network Connection
++ */
++
++#include "e1000.h"
++
++#define ICH_FLASH_GFPREG 0x0000
++#define ICH_FLASH_HSFSTS 0x0004
++#define ICH_FLASH_HSFCTL 0x0006
++#define ICH_FLASH_FADDR 0x0008
++#define ICH_FLASH_FDATA0 0x0010
++
++#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
++#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
++#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
++#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
++#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
++
++#define ICH_CYCLE_READ 0
++#define ICH_CYCLE_WRITE 2
++#define ICH_CYCLE_ERASE 3
++
++#define FLASH_GFPREG_BASE_MASK 0x1FFF
++#define FLASH_SECTOR_ADDR_SHIFT 12
++
++#define ICH_FLASH_SEG_SIZE_256 256
++#define ICH_FLASH_SEG_SIZE_4K 4096
++#define ICH_FLASH_SEG_SIZE_8K 8192
++#define ICH_FLASH_SEG_SIZE_64K 65536
++
++
++#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
++
++#define E1000_ICH_MNG_IAMT_MODE 0x2
++
++#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
++ (ID_LED_DEF1_OFF2 << 8) | \
++ (ID_LED_DEF1_ON2 << 4) | \
++ (ID_LED_DEF1_DEF2))
++
++#define E1000_ICH_NVM_SIG_WORD 0x13
++#define E1000_ICH_NVM_SIG_MASK 0xC000
++
++#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
++
++#define E1000_FEXTNVM_SW_CONFIG 1
++#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
++
++#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
++
++#define E1000_ICH_RAR_ENTRIES 7
++
++#define PHY_PAGE_SHIFT 5
++#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
++ ((reg) & MAX_PHY_REG_ADDRESS))
++#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
++#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
++
++#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
++#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
++#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
++
++/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
++/* Offset 04h HSFSTS */
++union ich8_hws_flash_status {
++ struct ich8_hsfsts {
++ u16 flcdone :1; /* bit 0 Flash Cycle Done */
++ u16 flcerr :1; /* bit 1 Flash Cycle Error */
++ u16 dael :1; /* bit 2 Direct Access error Log */
++ u16 berasesz :2; /* bit 4:3 Sector Erase Size */
++ u16 flcinprog :1; /* bit 5 flash cycle in Progress */
++ u16 reserved1 :2; /* bit 13:6 Reserved */
++ u16 reserved2 :6; /* bit 13:6 Reserved */
++ u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
++ u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
++ } hsf_status;
++ u16 regval;
++};
++
++/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
++/* Offset 06h FLCTL */
++union ich8_hws_flash_ctrl {
++ struct ich8_hsflctl {
++ u16 flcgo :1; /* 0 Flash Cycle Go */
++ u16 flcycle :2; /* 2:1 Flash Cycle */
++ u16 reserved :5; /* 7:3 Reserved */
++ u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
++ u16 flockdn :6; /* 15:10 Reserved */
++ } hsf_ctrl;
++ u16 regval;
++};
++
++/* ICH Flash Region Access Permissions */
++union ich8_hws_flash_regacc {
++ struct ich8_flracc {
++ u32 grra :8; /* 0:7 GbE region Read Access */
++ u32 grwa :8; /* 8:15 GbE region Write Access */
++ u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
++ u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
++ } hsf_flregacc;
++ u16 regval;
++};
++
++static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
++static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
++static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
++static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
++static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
++static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
++ u32 offset, u8 byte);
++static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
++ u16 *data);
++static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
++ u8 size, u16 *data);
++static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
++static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
++
++static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
++{
++ return readw(hw->flash_address + reg);
++}
++
++static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
++{
++ return readl(hw->flash_address + reg);
++}
++
++static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
++{
++ writew(val, hw->flash_address + reg);
++}
++
++static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
++{
++ writel(val, hw->flash_address + reg);
++}
++
++#define er16flash(reg) __er16flash(hw, (reg))
++#define er32flash(reg) __er32flash(hw, (reg))
++#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
++#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
++
++/**
++ * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
++ * @hw: pointer to the HW structure
++ *
++ * Initialize family-specific PHY parameters and function pointers.
++ **/
++static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val = E1000_SUCCESS;
++ u16 i = 0;
++
++ phy->addr = 1;
++ phy->reset_delay_us = 100;
++
++ phy->id = 0;
++ while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
++ (i++ < 100)) {
++ msleep(1);
++ ret_val = e1000_get_phy_id(hw);
++ if (ret_val)
++ goto out;
++ }
++
++ /* Verify phy id */
++ switch (phy->id) {
++ case IGP03E1000_E_PHY_ID:
++ phy->type = e1000_phy_igp_3;
++ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
++ break;
++ case IFE_E_PHY_ID:
++ case IFE_PLUS_E_PHY_ID:
++ case IFE_C_E_PHY_ID:
++ phy->type = e1000_phy_ife;
++ phy->autoneg_mask = E1000_ALL_NOT_GIG;
++ break;
++ default:
++ ret_val = -E1000_ERR_PHY;
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
++ * @hw: pointer to the HW structure
++ *
++ * Initialize family-specific NVM parameters and function
++ * pointers.
++ **/
++static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
++ u32 gfpreg;
++ u32 sector_base_addr;
++ u32 sector_end_addr;
++ s32 ret_val = E1000_SUCCESS;
++ u16 i;
++
++ /* Can't read flash registers if the register set isn't mapped.
++ */
++ if (!hw->flash_address) {
++ hw_dbg(hw, "ERROR: Flash registers not mapped\n");
++ ret_val = -E1000_ERR_CONFIG;
++ goto out;
++ }
++
++ nvm->type = e1000_nvm_flash_sw;
++
++ gfpreg = er32flash(ICH_FLASH_GFPREG);
++
++ /* sector_X_addr is a "sector"-aligned address (4096 bytes)
++ * Add 1 to sector_end_addr since this sector is included in
++ * the overall size. */
++ sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
++ sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
++
++ /* flash_base_addr is byte-aligned */
++ nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
++
++ /* find total size of the NVM, then cut in half since the total
++ * size represents two separate NVM banks. */
++ nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
++ << FLASH_SECTOR_ADDR_SHIFT;
++ nvm->flash_bank_size /= 2;
++ /* Adjust to word count */
++ nvm->flash_bank_size /= sizeof(u16);
++
++ nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
++
++ /* Clear shadow ram */
++ for (i = 0; i < nvm->word_size; i++) {
++ dev_spec->shadow_ram[i].modified = 0;
++ dev_spec->shadow_ram[i].value = 0xFFFF;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
++ * @hw: pointer to the HW structure
++ *
++ * Initialize family-specific MAC parameters and function
++ * pointers.
++ **/
++static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ struct e1000_mac_info *mac = &hw->mac;
++
++ /* Set media type function pointer */
++ hw->media_type = e1000_media_type_copper;
++
++ /* Set mta register count */
++ mac->mta_reg_count = 32;
++ /* Set rar entry count */
++ mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
++ if (mac->type == e1000_ich8lan)
++ mac->rar_entry_count--;
++ /* Set if manageability features are enabled. */
++ mac->arc_subsystem_valid = 1;
++
++ /* Enable PCS Lock-loss workaround for ICH8 */
++ if (mac->type == e1000_ich8lan)
++ e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
++
++ return E1000_SUCCESS;
++}
++
++static s32 e1000_get_invariants_ich8lan(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ s32 rc;
++
++ rc = e1000_init_mac_params_ich8lan(adapter);
++ if (rc)
++ return rc;
++
++ rc = e1000_init_nvm_params_ich8lan(hw);
++ if (rc)
++ return rc;
++
++ rc = e1000_init_phy_params_ich8lan(hw);
++ if (rc)
++ return rc;
++
++ if ((adapter->hw.mac.type == e1000_ich8lan) &&
++ (adapter->hw.phy.type == e1000_phy_igp_3))
++ adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
++
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_acquire_swflag_ich8lan - Acquire software control flag
++ * @hw: pointer to the HW structure
++ *
++ * Acquires the software control flag for performing NVM and PHY
++ * operations. This is a function pointer entry point only called by
++ * read/write routines for the PHY and NVM parts.
++ **/
++static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
++{
++ u32 extcnf_ctrl;
++ u32 timeout = PHY_CFG_TIMEOUT;
++ s32 ret_val = E1000_SUCCESS;
++
++ while (timeout) {
++ extcnf_ctrl = er32(EXTCNF_CTRL);
++ extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
++ ew32(EXTCNF_CTRL, extcnf_ctrl);
++
++ extcnf_ctrl = er32(EXTCNF_CTRL);
++ if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
++ break;
++ mdelay(1);
++ timeout--;
++ }
++
++ if (!timeout) {
++ hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
++ ret_val = -E1000_ERR_CONFIG;
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_release_swflag_ich8lan - Release software control flag
++ * @hw: pointer to the HW structure
++ *
++ * Releases the software control flag for performing NVM and PHY operations.
++ * This is a function pointer entry point only called by read/write
++ * routines for the PHY and NVM parts.
++ **/
++static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
++{
++ u32 extcnf_ctrl;
++
++ extcnf_ctrl = er32(EXTCNF_CTRL);
++ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
++ ew32(EXTCNF_CTRL, extcnf_ctrl);
++}
++
++/**
++ * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
++ * @hw: pointer to the HW structure
++ *
++ * Checks if firmware is blocking the reset of the PHY.
++ * This is a function pointer entry point only called by
++ * reset routines.
++ **/
++static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
++{
++ u32 fwsm;
++
++ fwsm = er32(FWSM);
++
++ return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? E1000_SUCCESS
++ : E1000_BLK_PHY_RESET;
++}
++
++/**
++ * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
++ * @hw: pointer to the HW structure
++ *
++ * Forces the speed and duplex settings of the PHY.
++ * This is a function pointer entry point only called by
++ * PHY setup routines.
++ **/
++static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 data;
++ bool link;
++
++ if (phy->type != e1000_phy_ife) {
++ ret_val = e1000_phy_force_speed_duplex_igp(hw);
++ goto out;
++ }
++
++ ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
++ if (ret_val)
++ goto out;
++
++ e1000_phy_force_speed_duplex_setup(hw, &data);
++
++ ret_val = e1e_wphy(hw, PHY_CONTROL, data);
++ if (ret_val)
++ goto out;
++
++ /* Disable MDI-X support for 10/100 */
++ ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
++ if (ret_val)
++ goto out;
++
++ data &= ~IFE_PMC_AUTO_MDIX;
++ data &= ~IFE_PMC_FORCE_MDIX;
++
++ ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
++ if (ret_val)
++ goto out;
++
++ hw_dbg(hw, "IFE PMC: %X\n", data);
++
++ udelay(1);
++
++ if (phy->wait_for_link) {
++ hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
++
++ ret_val = e1000_phy_has_link_generic(hw,
++ PHY_FORCE_LIMIT,
++ 100000,
++ &link);
++ if (ret_val)
++ goto out;
++
++ if (!link)
++ hw_dbg(hw, "Link taking longer than expected.\n");
++
++ /* Try once more */
++ ret_val = e1000_phy_has_link_generic(hw,
++ PHY_FORCE_LIMIT,
++ 100000,
++ &link);
++ if (ret_val)
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
++ * @hw: pointer to the HW structure
++ *
++ * Resets the PHY
++ * This is a function pointer entry point called by drivers
++ * or other shared routines.
++ **/
++static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ u32 i;
++ u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
++ s32 ret_val;
++ u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
++ u16 word_addr, reg_data, reg_addr, phy_page = 0;
++
++ ret_val = e1000_phy_hw_reset_generic(hw);
++ if (ret_val)
++ goto out;
++
++ /* Initialize the PHY from the NVM on ICH platforms. This
++ * is needed due to an issue where the NVM configuration is
++ * not properly autoloaded after power transitions.
++ * Therefore, after each PHY reset, we will load the
++ * configuration data out of the NVM manually.
++ */
++ if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
++ struct e1000_adapter *adapter = hw->adapter;
++
++ /* Check if SW needs configure the PHY */
++ if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
++ (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
++ sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
++ else
++ sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
++
++ data = er32(FEXTNVM);
++ if (!(data & sw_cfg_mask))
++ goto out;
++
++ /* Wait for basic configuration completes before proceeding*/
++ do {
++ data = er32(STATUS);
++ data &= E1000_STATUS_LAN_INIT_DONE;
++ udelay(100);
++ } while ((!data) && --loop);
++
++ /* If basic configuration is incomplete before the above loop
++ * count reaches 0, loading the configuration from NVM will
++ * leave the PHY in a bad state possibly resulting in no link.
++ */
++ if (loop == 0) {
++ hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
++ }
++
++ /* Clear the Init Done bit for the next init event */
++ data = er32(STATUS);
++ data &= ~E1000_STATUS_LAN_INIT_DONE;
++ ew32(STATUS, data);
++
++ /* Make sure HW does not configure LCD from PHY
++ * extended configuration before SW configuration */
++ data = er32(EXTCNF_CTRL);
++ if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
++ goto out;
++
++ cnf_size = er32(EXTCNF_SIZE);
++ cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
++ cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
++ if (!cnf_size)
++ goto out;
++
++ cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
++ cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
++
++ /* Configure LCD from extended configuration
++ * region. */
++
++ /* cnf_base_addr is in DWORD */
++ word_addr = (u16)(cnf_base_addr << 1);
++
++ for (i = 0; i < cnf_size; i++) {
++ ret_val = e1000_read_nvm(hw,
++ (word_addr + i * 2),
++ 1,
++ &reg_data);
++ if (ret_val)
++ goto out;
++
++ ret_val = e1000_read_nvm(hw,
++ (word_addr + i * 2 + 1),
++ 1,
++ &reg_addr);
++ if (ret_val)
++ goto out;
++
++ /* Save off the PHY page for future writes. */
++ if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
++ phy_page = reg_data;
++ continue;
++ }
++
++ reg_addr |= phy_page;
++
++ ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
++ if (ret_val)
++ goto out;
++ }
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
++ * @hw: pointer to the HW structure
++ *
++ * Populates "phy" structure with various feature states.
++ * This function is only called by other family-specific
++ * routines.
++ **/
++static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 data;
++ bool link;
++
++ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++ if (ret_val)
++ goto out;
++
++ if (!link) {
++ hw_dbg(hw, "Phy info is only valid if link is up\n");
++ ret_val = -E1000_ERR_CONFIG;
++ goto out;
++ }
++
++ ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
++ if (ret_val)
++ goto out;
++ phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
++
++ if (phy->polarity_correction) {
++ ret_val = e1000_check_polarity_ife_ich8lan(hw);
++ if (ret_val)
++ goto out;
++ } else {
++ /* Polarity is forced */
++ phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
++ ? e1000_rev_polarity_reversed
++ : e1000_rev_polarity_normal;
++ }
++
++ ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
++ if (ret_val)
++ goto out;
++
++ phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
++
++ /* The following parameters are undefined for 10/100 operation. */
++ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
++ phy->local_rx = e1000_1000t_rx_status_undefined;
++ phy->remote_rx = e1000_1000t_rx_status_undefined;
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
++ * @hw: pointer to the HW structure
++ *
++ * Wrapper for calling the get_phy_info routines for the appropriate phy type.
++ * This is a function pointer entry point called by drivers
++ * or other shared routines.
++ **/
++static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
++{
++ s32 ret_val = -E1000_ERR_PHY_TYPE;
++
++ switch (hw->phy.type) {
++ case e1000_phy_ife:
++ ret_val = e1000_get_phy_info_ife_ich8lan(hw);
++ break;
++ case e1000_phy_igp_3:
++ ret_val = e1000_get_phy_info_igp(hw);
++ break;
++ default:
++ break;
++ }
++
++ return ret_val;
++}
++
++/**
++ * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
++ * @hw: pointer to the HW structure
++ *
++ * Polarity is determined on the polarity reveral feature being enabled.
++ * This function is only called by other family-specific
++ * routines.
++ **/
++static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 phy_data, offset, mask;
++
++ /* Polarity is determined based on the reversal feature
++ * being enabled.
++ */
++ if (phy->polarity_correction) {
++ offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
++ mask = IFE_PESC_POLARITY_REVERSED;
++ } else {
++ offset = IFE_PHY_SPECIAL_CONTROL;
++ mask = IFE_PSC_FORCE_POLARITY;
++ }
++
++ ret_val = e1e_rphy(hw, offset, &phy_data);
++
++ if (!ret_val)
++ phy->cable_polarity = (phy_data & mask)
++ ? e1000_rev_polarity_reversed
++ : e1000_rev_polarity_normal;
++
++ return ret_val;
++}
++
++/**
++ * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
++ * @hw: pointer to the HW structure
++ * @active: TRUE to enable LPLU, FALSE to disable
++ *
++ * Sets the LPLU D0 state according to the active flag. When
++ * activating LPLU this function also disables smart speed
++ * and vice versa. LPLU will not be activated unless the
++ * device autonegotiation advertisement meets standards of
++ * either 10 or 10/100 or 10/100/1000 at all duplexes.
++ * This is a function pointer entry point only called by
++ * PHY setup routines.
++ **/
++static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ u32 phy_ctrl;
++ s32 ret_val = E1000_SUCCESS;
++ u16 data;
++
++ if (phy->type != e1000_phy_igp_3)
++ goto out;
++
++ phy_ctrl = er32(PHY_CTRL);
++
++ if (active) {
++ phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
++ ew32(PHY_CTRL, phy_ctrl);
++
++ /* Call gig speed drop workaround on LPLU before accessing
++ * any PHY registers */
++ if ((hw->mac.type == e1000_ich8lan) &&
++ (hw->phy.type == e1000_phy_igp_3))
++ e1000_gig_downshift_workaround_ich8lan(hw);
++
++ /* When LPLU is enabled, we should disable SmartSpeed */
++ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
++ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
++ if (ret_val)
++ goto out;
++ } else {
++ phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
++ ew32(PHY_CTRL, phy_ctrl);
++
++ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
++ * during Dx states where the power conservation is most
++ * important. During driver activity we should enable
++ * SmartSpeed, so performance is maintained. */
++ if (phy->smart_speed == e1000_smart_speed_on) {
++ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++ &data);
++ if (ret_val)
++ goto out;
++
++ data |= IGP01E1000_PSCFR_SMART_SPEED;
++ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++ data);
++ if (ret_val)
++ goto out;
++ } else if (phy->smart_speed == e1000_smart_speed_off) {
++ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++ &data);
++ if (ret_val)
++ goto out;
++
++ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++ data);
++ if (ret_val)
++ goto out;
++ }
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
++ * @hw: pointer to the HW structure
++ * @active: TRUE to enable LPLU, FALSE to disable
++ *
++ * Sets the LPLU D3 state according to the active flag. When
++ * activating LPLU this function also disables smart speed
++ * and vice versa. LPLU will not be activated unless the
++ * device autonegotiation advertisement meets standards of
++ * either 10 or 10/100 or 10/100/1000 at all duplexes.
++ * This is a function pointer entry point only called by
++ * PHY setup routines.
++ **/
++static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ u32 phy_ctrl;
++ s32 ret_val = E1000_SUCCESS;
++ u16 data;
++
++ phy_ctrl = er32(PHY_CTRL);
++
++ if (!active) {
++ phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
++ ew32(PHY_CTRL, phy_ctrl);
++ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
++ * during Dx states where the power conservation is most
++ * important. During driver activity we should enable
++ * SmartSpeed, so performance is maintained. */
++ if (phy->smart_speed == e1000_smart_speed_on) {
++ ret_val = e1e_rphy(hw,
++ IGP01E1000_PHY_PORT_CONFIG,
++ &data);
++ if (ret_val)
++ goto out;
++
++ data |= IGP01E1000_PSCFR_SMART_SPEED;
++ ret_val = e1e_wphy(hw,
++ IGP01E1000_PHY_PORT_CONFIG,
++ data);
++ if (ret_val)
++ goto out;
++ } else if (phy->smart_speed == e1000_smart_speed_off) {
++ ret_val = e1e_rphy(hw,
++ IGP01E1000_PHY_PORT_CONFIG,
++ &data);
++ if (ret_val)
++ goto out;
++
++ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++ ret_val = e1e_wphy(hw,
++ IGP01E1000_PHY_PORT_CONFIG,
++ data);
++ if (ret_val)
++ goto out;
++ }
++ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
++ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
++ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
++ phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
++ ew32(PHY_CTRL, phy_ctrl);
++
++ /* Call gig speed drop workaround on LPLU before accessing
++ * any PHY registers */
++ if ((hw->mac.type == e1000_ich8lan) &&
++ (hw->phy.type == e1000_phy_igp_3))
++ e1000_gig_downshift_workaround_ich8lan(hw);
++
++ /* When LPLU is enabled, we should disable SmartSpeed */
++ ret_val = e1e_rphy(hw,
++ IGP01E1000_PHY_PORT_CONFIG,
++ &data);
++ if (ret_val)
++ goto out;
++
++ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++ ret_val = e1e_wphy(hw,
++ IGP01E1000_PHY_PORT_CONFIG,
++ data);
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_read_nvm_ich8lan - Read word(s) from the NVM
++ * @hw: pointer to the HW structure
++ * @offset: The offset (in bytes) of the word(s) to read.
++ * @words: Size of data to read in words
++ * @data: Pointer to the word(s) to read at offset.
++ *
++ * Reads a word(s) from the NVM using the flash access registers.
++ **/
++static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
++ u16 *data)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
++ u32 act_offset;
++ s32 ret_val = E1000_SUCCESS;
++ u16 i, word;
++
++ if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
++ (words == 0)) {
++ hw_dbg(hw, "nvm parameter(s) out of bounds\n");
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++ ret_val = e1000_acquire_swflag_ich8lan(hw);
++ if (ret_val)
++ goto out;
++
++ /* Start with the bank offset, then add the relative offset. */
++ act_offset = (er32(EECD) & E1000_EECD_SEC1VAL)
++ ? nvm->flash_bank_size
++ : 0;
++ act_offset += offset;
++
++ for (i = 0; i < words; i++) {
++ if ((dev_spec->shadow_ram) &&
++ (dev_spec->shadow_ram[offset+i].modified)) {
++ data[i] = dev_spec->shadow_ram[offset+i].value;
++ } else {
++ ret_val = e1000_read_flash_word_ich8lan(hw,
++ act_offset + i,
++ &word);
++ if (ret_val)
++ break;
++ data[i] = word;
++ }
++ }
++
++ e1000_release_swflag_ich8lan(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_flash_cycle_init_ich8lan - Initialize flash
++ * @hw: pointer to the HW structure
++ *
++ * This function does initial flash setup so that a new read/write/erase cycle
++ * can be started.
++ **/
++static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
++{
++ union ich8_hws_flash_status hsfsts;
++ s32 ret_val = -E1000_ERR_NVM;
++ s32 i = 0;
++
++ hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
++
++ /* Check if the flash descriptor is valid */
++ if (hsfsts.hsf_status.fldesvalid == 0) {
++ hw_dbg(hw, "Flash descriptor invalid. "
++ "SW Sequencing must be used.");
++ goto out;
++ }
++
++ /* Clear FCERR and DAEL in hw status by writing 1 */
++ hsfsts.hsf_status.flcerr = 1;
++ hsfsts.hsf_status.dael = 1;
++
++ ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
++
++ /* Either we should have a hardware SPI cycle in progress
++ * bit to check against, in order to start a new cycle or
++ * FDONE bit should be changed in the hardware so that it
++ * is 1 after harware reset, which can then be used as an
++ * indication whether a cycle is in progress or has been
++ * completed.
++ */
++
++ if (hsfsts.hsf_status.flcinprog == 0) {
++ /* There is no cycle running at present,
++ * so we can start a cycle */
++ /* Begin by setting Flash Cycle Done. */
++ hsfsts.hsf_status.flcdone = 1;
++ ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
++ ret_val = E1000_SUCCESS;
++ } else {
++ /* otherwise poll for sometime so the current
++ * cycle has a chance to end before giving up. */
++ for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
++ hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
++ if (hsfsts.hsf_status.flcinprog == 0) {
++ ret_val = E1000_SUCCESS;
++ break;
++ }
++ udelay(1);
++ }
++ if (ret_val == E1000_SUCCESS) {
++ /* Successful in waiting for previous cycle to timeout,
++ * now set the Flash Cycle Done. */
++ hsfsts.hsf_status.flcdone = 1;
++ ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
++ } else {
++ hw_dbg(hw, "Flash controller busy, cannot get access");
++ }
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
++ * @hw: pointer to the HW structure
++ * @timeout: maximum time to wait for completion
++ *
++ * This function starts a flash cycle and waits for its completion.
++ **/
++static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
++{
++ union ich8_hws_flash_ctrl hsflctl;
++ union ich8_hws_flash_status hsfsts;
++ s32 ret_val = -E1000_ERR_NVM;
++ u32 i = 0;
++
++ /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
++ hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
++ hsflctl.hsf_ctrl.flcgo = 1;
++ ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
++
++ /* wait till FDONE bit is set to 1 */
++ do {
++ hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
++ if (hsfsts.hsf_status.flcdone == 1)
++ break;
++ udelay(1);
++ } while (i++ < timeout);
++
++ if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
++ ret_val = E1000_SUCCESS;
++
++ return ret_val;
++}
++
++/**
++ * e1000_read_flash_word_ich8lan - Read word from flash
++ * @hw: pointer to the HW structure
++ * @offset: offset to data location
++ * @data: pointer to the location for storing the data
++ *
++ * Reads the flash word at offset into data. Offset is converted
++ * to bytes before read.
++ **/
++static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
++ u16 *data)
++{
++ s32 ret_val;
++
++ if (!data) {
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++ /* Must convert offset into bytes. */
++ offset <<= 1;
++
++ ret_val = e1000_read_flash_data_ich8lan(hw, offset, 2, data);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_read_flash_data_ich8lan - Read byte or word from NVM
++ * @hw: pointer to the HW structure
++ * @offset: The offset (in bytes) of the byte or word to read.
++ * @size: Size of data to read, 1=byte 2=word
++ * @data: Pointer to the word to store the value read.
++ *
++ * Reads a byte or word from the NVM using the flash access registers.
++ **/
++static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
++ u8 size, u16 *data)
++{
++ union ich8_hws_flash_status hsfsts;
++ union ich8_hws_flash_ctrl hsflctl;
++ u32 flash_linear_addr;
++ u32 flash_data = 0;
++ s32 ret_val = -E1000_ERR_NVM;
++ u8 count = 0;
++
++ if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
++ goto out;
++
++ flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
++ hw->nvm.flash_base_addr;
++
++ do {
++ udelay(1);
++ /* Steps */
++ ret_val = e1000_flash_cycle_init_ich8lan(hw);
++ if (ret_val != E1000_SUCCESS)
++ break;
++
++ hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
++ /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
++ hsflctl.hsf_ctrl.fldbcount = size - 1;
++ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
++ ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
++
++ ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
++
++ ret_val = e1000_flash_cycle_ich8lan(hw,
++ ICH_FLASH_READ_COMMAND_TIMEOUT);
++
++ /* Check if FCERR is set to 1, if set to 1, clear it
++ * and try the whole sequence a few more times, else
++ * read in (shift in) the Flash Data0, the order is
++ * least significant byte first msb to lsb */
++ if (ret_val == E1000_SUCCESS) {
++ flash_data = er32flash(ICH_FLASH_FDATA0);
++ if (size == 1) {
++ *data = (u8)(flash_data & 0x000000FF);
++ } else if (size == 2) {
++ *data = (u16)(flash_data & 0x0000FFFF);
++ }
++ break;
++ } else {
++ /* If we've gotten here, then things are probably
++ * completely hosed, but if the error condition is
++ * detected, it won't hurt to give it another try...
++ * ICH_FLASH_CYCLE_REPEAT_COUNT times.
++ */
++ hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
++ if (hsfsts.hsf_status.flcerr == 1) {
++ /* Repeat for some time before giving up. */
++ continue;
++ } else if (hsfsts.hsf_status.flcdone == 0) {
++ hw_dbg(hw, "Timeout error - flash cycle "
++ "did not complete.");
++ break;
++ }
++ }
++ } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_write_nvm_ich8lan - Write word(s) to the NVM
++ * @hw: pointer to the HW structure
++ * @offset: The offset (in bytes) of the word(s) to write.
++ * @words: Size of data to write in words
++ * @data: Pointer to the word(s) to write at offset.
++ *
++ * Writes a byte or word to the NVM using the flash access registers.
++ **/
++static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
++ u16 *data)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
++ s32 ret_val = E1000_SUCCESS;
++ u16 i;
++
++ if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
++ (words == 0)) {
++ hw_dbg(hw, "nvm parameter(s) out of bounds\n");
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++ ret_val = e1000_acquire_swflag_ich8lan(hw);
++ if (ret_val)
++ goto out;
++
++ for (i = 0; i < words; i++) {
++ dev_spec->shadow_ram[offset+i].modified = 1;
++ dev_spec->shadow_ram[offset+i].value = data[i];
++ }
++
++ e1000_release_swflag_ich8lan(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
++ * @hw: pointer to the HW structure
++ *
++ * The NVM checksum is updated by calling the generic update_nvm_checksum,
++ * which writes the checksum to the shadow ram. The changes in the shadow
++ * ram are then committed to the EEPROM by processing each bank at a time
++ * checking for the modified bit and writing only the pending changes.
++ * After a succesful commit, the shadow ram is cleared and is ready for
++ * future writes.
++ **/
++static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
++ u32 i, act_offset, new_bank_offset, old_bank_offset;
++ s32 ret_val;
++ u16 data;
++
++ ret_val = e1000_update_nvm_checksum_generic(hw);
++ if (ret_val)
++ goto out;
++
++ if (nvm->type != e1000_nvm_flash_sw)
++ goto out;
++
++ ret_val = e1000_acquire_swflag_ich8lan(hw);
++ if (ret_val)
++ goto out;
++
++ /* We're writing to the opposite bank so if we're on bank 1,
++ * write to bank 0 etc. We also need to erase the segment that
++ * is going to be written */
++ if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
++ new_bank_offset = nvm->flash_bank_size;
++ old_bank_offset = 0;
++ e1000_erase_flash_bank_ich8lan(hw, 1);
++ } else {
++ old_bank_offset = nvm->flash_bank_size;
++ new_bank_offset = 0;
++ e1000_erase_flash_bank_ich8lan(hw, 0);
++ }
++
++ for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
++ /* Determine whether to write the value stored
++ * in the other NVM bank or a modified value stored
++ * in the shadow RAM */
++ if (dev_spec->shadow_ram[i].modified) {
++ data = dev_spec->shadow_ram[i].value;
++ } else {
++ e1000_read_flash_word_ich8lan(hw,
++ i + old_bank_offset,
++ &data);
++ }
++
++ /* If the word is 0x13, then make sure the signature bits
++ * (15:14) are 11b until the commit has completed.
++ * This will allow us to write 10b which indicates the
++ * signature is valid. We want to do this after the write
++ * has completed so that we don't mark the segment valid
++ * while the write is still in progress */
++ if (i == E1000_ICH_NVM_SIG_WORD)
++ data |= E1000_ICH_NVM_SIG_MASK;
++
++ /* Convert offset to bytes. */
++ act_offset = (i + new_bank_offset) << 1;
++
++ udelay(100);
++ /* Write the bytes to the new bank. */
++ ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
++ act_offset,
++ (u8)data);
++ if (ret_val)
++ break;
++
++ udelay(100);
++ ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
++ act_offset + 1,
++ (u8)(data >> 8));
++ if (ret_val)
++ break;
++ }
++
++ /* Don't bother writing the segment valid bits if sector
++ * programming failed. */
++ if (ret_val) {
++ hw_dbg(hw, "Flash commit failed.\n");
++ e1000_release_swflag_ich8lan(hw);
++ goto out;
++ }
++
++ /* Finally validate the new segment by setting bit 15:14
++ * to 10b in word 0x13 , this can be done without an
++ * erase as well since these bits are 11 to start with
++ * and we need to change bit 14 to 0b */
++ act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
++ e1000_read_flash_word_ich8lan(hw, act_offset, &data);
++ data &= 0xBFFF;
++ ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
++ act_offset * 2 + 1,
++ (u8)(data >> 8));
++ if (ret_val) {
++ e1000_release_swflag_ich8lan(hw);
++ goto out;
++ }
++
++ /* And invalidate the previously valid segment by setting
++ * its signature word (0x13) high_byte to 0b. This can be
++ * done without an erase because flash erase sets all bits
++ * to 1's. We can write 1's to 0's without an erase */
++ act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
++ ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
++ if (ret_val) {
++ e1000_release_swflag_ich8lan(hw);
++ goto out;
++ }
++
++ /* Great! Everything worked, we can now clear the cached entries. */
++ for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
++ dev_spec->shadow_ram[i].modified = 0;
++ dev_spec->shadow_ram[i].value = 0xFFFF;
++ }
++
++ e1000_release_swflag_ich8lan(hw);
++
++ /* Reload the EEPROM, or else modifications will not appear
++ * until after the next adapter reset.
++ */
++ e1000_reload_nvm(hw);
++ msleep(10);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
++ * @hw: pointer to the HW structure
++ *
++ * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
++ * If the bit is 0, that the EEPROM had been modified, but the checksum was not
++ * calculated, in which case we need to calculate the checksum and set bit 6.
++ **/
++static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
++{
++ s32 ret_val = E1000_SUCCESS;
++ u16 data;
++
++ /* Read 0x19 and check bit 6. If this bit is 0, the checksum
++ * needs to be fixed. This bit is an indication that the NVM
++ * was prepared by OEM software and did not calculate the
++ * checksum...a likely scenario.
++ */
++ ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
++ if (ret_val)
++ goto out;
++
++ if ((data & 0x40) == 0) {
++ data |= 0x40;
++ ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
++ if (ret_val)
++ goto out;
++ ret_val = e1000_update_nvm_checksum(hw);
++ if (ret_val)
++ goto out;
++ }
++
++ ret_val = e1000_validate_nvm_checksum_generic(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
++ * @hw: pointer to the HW structure
++ * @offset: The offset (in bytes) of the byte/word to read.
++ * @size: Size of data to read, 1=byte 2=word
++ * @data: The byte(s) to write to the NVM.
++ *
++ * Writes one/two bytes to the NVM using the flash access registers.
++ **/
++static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
++ u8 size, u16 data)
++{
++ union ich8_hws_flash_status hsfsts;
++ union ich8_hws_flash_ctrl hsflctl;
++ u32 flash_linear_addr;
++ u32 flash_data = 0;
++ s32 ret_val = -E1000_ERR_NVM;
++ u8 count = 0;
++
++ if (size < 1 || size > 2 || data > size * 0xff ||
++ offset > ICH_FLASH_LINEAR_ADDR_MASK)
++ goto out;
++
++ flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
++ hw->nvm.flash_base_addr;
++
++ do {
++ udelay(1);
++ /* Steps */
++ ret_val = e1000_flash_cycle_init_ich8lan(hw);
++ if (ret_val != E1000_SUCCESS)
++ break;
++
++ hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
++ /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
++ hsflctl.hsf_ctrl.fldbcount = size -1;
++ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
++ ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
++
++ ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
++
++ if (size == 1)
++ flash_data = (u32)data & 0x00FF;
++ else
++ flash_data = (u32)data;
++
++ ew32flash(ICH_FLASH_FDATA0, flash_data);
++
++ /* check if FCERR is set to 1 , if set to 1, clear it
++ * and try the whole sequence a few more times else done */
++ ret_val = e1000_flash_cycle_ich8lan(hw,
++ ICH_FLASH_WRITE_COMMAND_TIMEOUT);
++ if (ret_val == E1000_SUCCESS) {
++ break;
++ } else {
++ /* If we're here, then things are most likely
++ * completely hosed, but if the error condition
++ * is detected, it won't hurt to give it another
++ * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
++ */
++ hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
++ if (hsfsts.hsf_status.flcerr == 1) {
++ /* Repeat for some time before giving up. */
++ continue;
++ } else if (hsfsts.hsf_status.flcdone == 0) {
++ hw_dbg(hw, "Timeout error - flash cycle "
++ "did not complete.");
++ break;
++ }
++ }
++ } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
++ * @hw: pointer to the HW structure
++ * @offset: The index of the byte to read.
++ * @data: The byte to write to the NVM.
++ *
++ * Writes a single byte to the NVM using the flash access registers.
++ **/
++static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
++ u8 data)
++{
++ u16 word = (u16)data;
++
++ return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
++}
++
++/**
++ * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
++ * @hw: pointer to the HW structure
++ * @offset: The offset of the byte to write.
++ * @byte: The byte to write to the NVM.
++ *
++ * Writes a single byte to the NVM using the flash access registers.
++ * Goes through a retry algorithm before giving up.
++ **/
++static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
++ u32 offset, u8 byte)
++{
++ s32 ret_val;
++ u16 program_retries;
++
++ ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
++ if (ret_val == E1000_SUCCESS)
++ goto out;
++
++ for (program_retries = 0; program_retries < 100; program_retries++) {
++ hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
++ udelay(100);
++ ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
++ if (ret_val == E1000_SUCCESS)
++ break;
++ }
++ if (program_retries == 100) {
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
++ * @hw: pointer to the HW structure
++ * @bank: 0 for first bank, 1 for second bank, etc.
++ *
++ * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
++ * bank N is 4096 * N + flash_reg_addr.
++ **/
++static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ union ich8_hws_flash_status hsfsts;
++ union ich8_hws_flash_ctrl hsflctl;
++ u32 flash_linear_addr;
++ /* bank size is in 16bit words - adjust to bytes */
++ u32 flash_bank_size = nvm->flash_bank_size * 2;
++ s32 ret_val = E1000_SUCCESS;
++ s32 count = 0;
++ s32 j, iteration, sector_size;
++
++ hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
++
++ /* Determine HW Sector size: Read BERASE bits of hw flash status
++ * register */
++ /* 00: The Hw sector is 256 bytes, hence we need to erase 16
++ * consecutive sectors. The start index for the nth Hw sector
++ * can be calculated as = bank * 4096 + n * 256
++ * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
++ * The start index for the nth Hw sector can be calculated
++ * as = bank * 4096
++ * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
++ * (ich9 only, otherwise error condition)
++ * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
++ */
++ switch (hsfsts.hsf_status.berasesz) {
++ case 0:
++ /* Hw sector size 256 */
++ sector_size = ICH_FLASH_SEG_SIZE_256;
++ iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
++ break;
++ case 1:
++ sector_size = ICH_FLASH_SEG_SIZE_4K;
++ iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
++ break;
++ case 2:
++ if (hw->mac.type == e1000_ich9lan) {
++ sector_size = ICH_FLASH_SEG_SIZE_8K;
++ iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
++ } else {
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++ break;
++ case 3:
++ sector_size = ICH_FLASH_SEG_SIZE_64K;
++ iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
++ break;
++ default:
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++ /* Start with the base address, then add the sector offset. */
++ flash_linear_addr = hw->nvm.flash_base_addr;
++ flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
++
++ for (j = 0; j < iteration ; j++) {
++ do {
++ /* Steps */
++ ret_val = e1000_flash_cycle_init_ich8lan(hw);
++ if (ret_val)
++ goto out;
++
++ /* Write a value 11 (block Erase) in Flash
++ * Cycle field in hw flash control */
++ hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
++ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
++ ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
++
++ /* Write the last 24 bits of an index within the
++ * block into Flash Linear address field in Flash
++ * Address.
++ */
++ flash_linear_addr += (j * sector_size);
++ ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
++
++ ret_val = e1000_flash_cycle_ich8lan(hw,
++ ICH_FLASH_ERASE_COMMAND_TIMEOUT);
++ if (ret_val == E1000_SUCCESS) {
++ break;
++ } else {
++ /* Check if FCERR is set to 1. If 1,
++ * clear it and try the whole sequence
++ * a few more times else Done */
++ hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
++ if (hsfsts.hsf_status.flcerr == 1) {
++ /* repeat for some time before
++ * giving up */
++ continue;
++ } else if (hsfsts.hsf_status.flcdone == 0)
++ goto out;
++ }
++ } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_valid_led_default_ich8lan - Set the default LED settings
++ * @hw: pointer to the HW structure
++ * @data: Pointer to the LED settings
++ *
++ * Reads the LED default settings from the NVM to data. If the NVM LED
++ * settings is all 0's or F's, set the LED default to a valid LED default
++ * setting.
++ **/
++static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
++{
++ s32 ret_val;
++
++ ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
++ if (ret_val) {
++ hw_dbg(hw, "NVM Read Error\n");
++ goto out;
++ }
++
++ if (*data == ID_LED_RESERVED_0000 ||
++ *data == ID_LED_RESERVED_FFFF)
++ *data = ID_LED_DEFAULT_ICH8LAN;
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
++ * @hw: pointer to the HW structure
++ *
++ * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
++ * register, so the the bus width is hard coded.
++ **/
++static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
++{
++ struct e1000_bus_info *bus = &hw->bus;
++ s32 ret_val;
++
++ ret_val = e1000_get_bus_info_pcie(hw);
++
++ /* ICH devices are "PCI Express"-ish. They have
++ * a configuration space, but do not contain
++ * PCI Express Capability registers, so bus width
++ * must be hardcoded.
++ */
++ if (bus->width == e1000_bus_width_unknown)
++ bus->width = e1000_bus_width_pcie_x1;
++
++ return ret_val;
++}
++
++/**
++ * e1000_reset_hw_ich8lan - Reset the hardware
++ * @hw: pointer to the HW structure
++ *
++ * Does a full reset of the hardware which includes a reset of the PHY and
++ * MAC.
++ **/
++static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
++{
++ u32 ctrl, icr, kab;
++ s32 ret_val;
++
++ /* Prevent the PCI-E bus from sticking if there is no TLP connection
++ * on the last TLP read/write transaction when MAC is reset.
++ */
++ ret_val = e1000_disable_pcie_master(hw);
++ if (ret_val) {
++ hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
++ }
++
++ hw_dbg(hw, "Masking off all interrupts\n");
++ ew32(IMC, 0xffffffff);
++
++ /* Disable the Transmit and Receive units. Then delay to allow
++ * any pending transactions to complete before we hit the MAC
++ * with the global reset.
++ */
++ ew32(RCTL, 0);
++ ew32(TCTL, E1000_TCTL_PSP);
++ e1e_flush();
++
++ msleep(10);
++
++ /* Workaround for ICH8 bit corruption issue in FIFO memory */
++ if (hw->mac.type == e1000_ich8lan) {
++ /* Set Tx and Rx buffer allocation to 8k apiece. */
++ ew32(PBA, E1000_PBA_8K);
++ /* Set Packet Buffer Size to 16k. */
++ ew32(PBS, E1000_PBS_16K);
++ }
++
++ ctrl = er32(CTRL);
++
++ if (!e1000_check_reset_block(hw)) {
++ /* PHY HW reset requires MAC CORE reset at the same
++ * time to make sure the interface between MAC and the
++ * external PHY is reset.
++ */
++ ctrl |= E1000_CTRL_PHY_RST;
++ }
++ ret_val = e1000_acquire_swflag_ich8lan(hw);
++ hw_dbg(hw, "Issuing a global reset to ich8lan");
++ ew32(CTRL, (ctrl | E1000_CTRL_RST));
++ msleep(20);
++
++ ret_val = e1000_get_auto_rd_done(hw);
++ if (ret_val) {
++ /*
++ * When auto config read does not complete, do not
++ * return with an error. This can happen in situations
++ * where there is no eeprom and prevents getting link.
++ */
++ hw_dbg(hw, "Auto Read Done did not complete\n");
++ }
++
++ ew32(IMC, 0xffffffff);
++ icr = er32(ICR);
++
++ kab = er32(KABGTXD);
++ kab |= E1000_KABGTXD_BGSQLBIAS;
++ ew32(KABGTXD, kab);
++
++ return ret_val;
++}
++
++/**
++ * e1000_init_hw_ich8lan - Initialize the hardware
++ * @hw: pointer to the HW structure
++ *
++ * Prepares the hardware for transmit and receive by doing the following:
++ * - initialize hardware bits
++ * - initialize LED identification
++ * - setup receive address registers
++ * - setup flow control
++ * - setup transmit discriptors
++ * - clear statistics
++ **/
++static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ u32 ctrl_ext, txdctl, snoop;
++ s32 ret_val;
++ u16 i;
++
++ e1000_initialize_hw_bits_ich8lan(hw);
++
++ /* Initialize identification LED */
++ ret_val = e1000_id_led_init(hw);
++ if (ret_val) {
++ hw_dbg(hw, "Error initializing identification LED\n");
++ goto out;
++ }
++
++ /* Setup the receive address. */
++ e1000_init_rx_addrs(hw, mac->rar_entry_count);
++
++ /* Zero out the Multicast HASH table */
++ hw_dbg(hw, "Zeroing the MTA\n");
++ for (i = 0; i < mac->mta_reg_count; i++)
++ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
++
++ /* Setup link and flow control */
++ ret_val = e1000_setup_link_ich8lan(hw);
++
++ /* Set the transmit descriptor write-back policy for both queues */
++ txdctl = er32(TXDCTL);
++ txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
++ E1000_TXDCTL_FULL_TX_DESC_WB;
++ txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
++ E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
++ ew32(TXDCTL, txdctl);
++ txdctl = er32(TXDCTL1);
++ txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
++ E1000_TXDCTL_FULL_TX_DESC_WB;
++ txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
++ E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
++ ew32(TXDCTL1, txdctl);
++
++ /* ICH8 has opposite polarity of no_snoop bits.
++ * By default, we should use snoop behavior. */
++ if (mac->type == e1000_ich8lan)
++ snoop = PCIE_ICH8_SNOOP_ALL;
++ else
++ snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
++ e1000_set_pcie_no_snoop(hw, snoop);
++
++ ctrl_ext = er32(CTRL_EXT);
++ ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
++ ew32(CTRL_EXT, ctrl_ext);
++
++ /* Clear all of the statistics registers (clear on read). It is
++ * important that we do this after we have tried to establish link
++ * because the symbol error count will increment wildly if there
++ * is no link.
++ */
++ e1000_clear_hw_cntrs_ich8lan(hw);
++
++out:
++ return ret_val;
++}
++/**
++ * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
++ * @hw: pointer to the HW structure
++ *
++ * Sets/Clears required hardware bits necessary for correctly setting up the
++ * hardware for transmit and receive.
++ **/
++static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
++{
++ u32 reg;
++
++ /* Extended Device Control */
++ reg = er32(CTRL_EXT);
++ reg |= (1 << 22);
++ ew32(CTRL_EXT, reg);
++
++ /* Transmit Descriptor Control 0 */
++ reg = er32(TXDCTL);
++ reg |= (1 << 22);
++ ew32(TXDCTL, reg);
++
++ /* Transmit Descriptor Control 1 */
++ reg = er32(TXDCTL1);
++ reg |= (1 << 22);
++ ew32(TXDCTL1, reg);
++
++ /* Transmit Arbitration Control 0 */
++ reg = er32(TARC0);
++ if (hw->mac.type == e1000_ich8lan)
++ reg |= (1 << 28) | (1 << 29);
++ reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
++ ew32(TARC0, reg);
++
++ /* Transmit Arbitration Control 1 */
++ reg = er32(TARC1);
++ if (er32(TCTL) & E1000_TCTL_MULR)
++ reg &= ~(1 << 28);
++ else
++ reg |= (1 << 28);
++ reg |= (1 << 24) | (1 << 26) | (1 << 30);
++ ew32(TARC1, reg);
++
++ /* Device Status */
++ if (hw->mac.type == e1000_ich8lan) {
++ reg = er32(STATUS);
++ reg &= ~(1 << 31);
++ ew32(STATUS, reg);
++ }
++}
++
++/**
++ * e1000_setup_link_ich8lan - Setup flow control and link settings
++ * @hw: pointer to the HW structure
++ *
++ * Determines which flow control settings to use, then configures flow
++ * control. Calls the appropriate media-specific link configuration
++ * function. Assuming the adapter has a valid link partner, a valid link
++ * should be established. Assumes the hardware has previously been reset
++ * and the transmitter and receiver are not enabled.
++ **/
++static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ s32 ret_val = E1000_SUCCESS;
++
++ if (e1000_check_reset_block(hw))
++ goto out;
++
++ /* ICH parts do not have a word in the NVM to determine
++ * the default flow control setting, so we explicitly
++ * set it to full.
++ */
++ if (mac->fc == e1000_fc_default)
++ mac->fc = e1000_fc_full;
++
++ mac->original_fc = mac->fc;
++
++ hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc);
++
++ /* Continue to configure the copper link. */
++ ret_val = e1000_setup_copper_link_ich8lan(hw);
++ if (ret_val)
++ goto out;
++
++ ew32(FCTTV, mac->fc_pause_time);
++
++ ret_val = e1000_set_fc_watermarks(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
++ * @hw: pointer to the HW structure
++ *
++ * Configures the kumeran interface to the PHY to wait the appropriate time
++ * when polling the PHY, then call the generic setup_copper_link to finish
++ * configuring the copper link.
++ **/
++static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
++{
++ u32 ctrl;
++ s32 ret_val;
++ u16 reg_data;
++
++ ctrl = er32(CTRL);
++ ctrl |= E1000_CTRL_SLU;
++ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
++ ew32(CTRL, ctrl);
++
++ /* Set the mac to wait the maximum time between each iteration
++ * and increase the max iterations when polling the phy;
++ * this fixes erroneous timeouts at 10Mbps. */
++ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
++ if (ret_val)
++ goto out;
++ ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
++ if (ret_val)
++ goto out;
++ reg_data |= 0x3F;
++ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
++ if (ret_val)
++ goto out;
++
++ if (hw->phy.type == e1000_phy_igp_3) {
++ ret_val = e1000_copper_link_setup_igp(hw);
++ if (ret_val)
++ goto out;
++ }
++
++ ret_val = e1000_setup_copper_link(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
++ * @hw: pointer to the HW structure
++ * @speed: pointer to store current link speed
++ * @duplex: pointer to store the current link duplex
++ *
++ * Calls the generic get_speed_and_duplex to retreive the current link
++ * information and then calls the Kumeran lock loss workaround for links at
++ * gigabit speeds.
++ **/
++static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
++ u16 *duplex)
++{
++ s32 ret_val;
++
++ ret_val = e1000_get_speed_and_duplex_copper(hw, speed, duplex);
++ if (ret_val)
++ goto out;
++
++ if ((hw->mac.type == e1000_ich8lan) &&
++ (hw->phy.type == e1000_phy_igp_3) &&
++ (*speed == SPEED_1000)) {
++ ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
++ * @hw: pointer to the HW structure
++ *
++ * Work-around for 82566 Kumeran PCS lock loss:
++ * On link status change (i.e. PCI reset, speed change) and link is up and
++ * speed is gigabit-
++ * 0) if workaround is optionally disabled do nothing
++ * 1) wait 1ms for Kumeran link to come up
++ * 2) check Kumeran Diagnostic register PCS lock loss bit
++ * 3) if not set the link is locked (all is good), otherwise...
++ * 4) reset the PHY
++ * 5) repeat up to 10 times
++ * Note: this is only called for IGP3 copper when speed is 1gb.
++ **/
++static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
++{
++ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
++ u32 phy_ctrl;
++ s32 ret_val = E1000_SUCCESS;
++ u16 i, data;
++ bool link;
++
++ if (!dev_spec->kmrn_lock_loss_workaround_enabled)
++ goto out;
++
++ /* Make sure link is up before proceeding. If not just return.
++ * Attempting this while link is negotiating fouled up link
++ * stability */
++ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++ if (!link) {
++ ret_val = E1000_SUCCESS;
++ goto out;
++ }
++
++ for (i = 0; i < 10; i++) {
++ /* read once to clear */
++ ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
++ if (ret_val)
++ goto out;
++ /* and again to get new status */
++ ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
++ if (ret_val)
++ goto out;
++
++ /* check for PCS lock */
++ if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) {
++ ret_val = E1000_SUCCESS;
++ goto out;
++ }
++
++ /* Issue PHY reset */
++ e1000_phy_hw_reset(hw);
++ mdelay(5);
++ }
++ /* Disable GigE link negotiation */
++ phy_ctrl = er32(PHY_CTRL);
++ phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
++ E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
++ ew32(PHY_CTRL, phy_ctrl);
++
++ /* Call gig speed drop workaround on Giga disable before accessing
++ * any PHY registers */
++ e1000_gig_downshift_workaround_ich8lan(hw);
++
++ /* unable to acquire PCS lock */
++ ret_val = -E1000_ERR_PHY;
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_set_kmrn_lock_loss_workaound_ich8lan - Set Kumeran workaround state
++ * @hw: pointer to the HW structure
++ * @state: boolean value used to set the current Kumaran workaround state
++ *
++ * If ICH8, set the current Kumeran workaround state (enabled - TRUE
++ * /disabled - FALSE).
++ **/
++void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
++ bool state)
++{
++ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
++
++ if (hw->mac.type != e1000_ich8lan) {
++ hw_dbg(hw, "Workaround applies to ICH8 only.\n");
++ goto out;
++ }
++
++ dev_spec->kmrn_lock_loss_workaround_enabled = state;
++
++out:
++ return;
++}
++
++/**
++ * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
++ * @hw: pointer to the HW structure
++ *
++ * Workaround for 82566 power-down on D3 entry:
++ * 1) disable gigabit link
++ * 2) write VR power-down enable
++ * 3) read it back
++ * Continue if successful, else issue LCD reset and repeat
++ **/
++void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
++{
++ u32 reg;
++ u16 data;
++ u8 retry = 0;
++
++ if (hw->phy.type != e1000_phy_igp_3)
++ goto out;
++
++ /* Try the workaround twice (if needed) */
++ do {
++ /* Disable link */
++ reg = er32(PHY_CTRL);
++ reg |= (E1000_PHY_CTRL_GBE_DISABLE |
++ E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
++ ew32(PHY_CTRL, reg);
++
++ /* Call gig speed drop workaround on Giga disable before
++ * accessing any PHY registers */
++ if (hw->mac.type == e1000_ich8lan)
++ e1000_gig_downshift_workaround_ich8lan(hw);
++
++ /* Write VR power-down enable */
++ e1e_rphy(hw, IGP3_VR_CTRL, &data);
++ data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
++ e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
++
++ /* Read it back and test */
++ e1e_rphy(hw, IGP3_VR_CTRL, &data);
++ data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
++ if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
++ break;
++
++ /* Issue PHY reset and repeat at most one more time */
++ reg = er32(CTRL);
++ ew32(CTRL, reg | E1000_CTRL_PHY_RST);
++ retry++;
++ } while (retry);
++
++out:
++ return;
++}
++
++/**
++ * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
++ * @hw: pointer to the HW structure
++ *
++ * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
++ * LPLU, Giga disable, MDIC PHY reset):
++ * 1) Set Kumeran Near-end loopback
++ * 2) Clear Kumeran Near-end loopback
++ * Should only be called for ICH8[m] devices with IGP_3 Phy.
++ **/
++void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
++{
++ s32 ret_val = E1000_SUCCESS;
++ u16 reg_data;
++
++ if ((hw->mac.type != e1000_ich8lan) ||
++ (hw->phy.type != e1000_phy_igp_3))
++ goto out;
++
++ ret_val = e1000_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
++ &reg_data);
++ if (ret_val)
++ goto out;
++ reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
++ ret_val = e1000_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
++ reg_data);
++ if (ret_val)
++ goto out;
++ reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
++ ret_val = e1000_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
++ reg_data);
++out:
++ return;
++}
++
++/**
++ * e1000_cleanup_led_ich8lan - Restore the default LED operation
++ * @hw: pointer to the HW structure
++ *
++ * Return the LED back to the default configuration.
++ **/
++static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
++{
++ s32 ret_val = E1000_SUCCESS;
++
++ if (hw->phy.type == e1000_phy_ife)
++ ret_val = e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
++ else
++ ew32(LEDCTL, hw->mac.ledctl_default);
++
++ return ret_val;
++}
++
++/**
++ * e1000_led_on_ich8lan - Turn LED's on
++ * @hw: pointer to the HW structure
++ *
++ * Turn on the LED's.
++ **/
++static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
++{
++ s32 ret_val = E1000_SUCCESS;
++
++ if (hw->phy.type == e1000_phy_ife)
++ ret_val = e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
++ (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
++ else
++ ew32(LEDCTL, hw->mac.ledctl_mode2);
++
++ return ret_val;
++}
++
++/**
++ * e1000_led_off_ich8lan - Turn LED's off
++ * @hw: pointer to the HW structure
++ *
++ * Turn off the LED's.
++ **/
++static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
++{
++ s32 ret_val = E1000_SUCCESS;
++
++ if (hw->phy.type == e1000_phy_ife)
++ ret_val = e1e_wphy(hw,
++ IFE_PHY_SPECIAL_CONTROL_LED,
++ (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
++ else
++ ew32(LEDCTL, hw->mac.ledctl_mode1);
++
++ return ret_val;
++}
++
++/**
++ * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
++ * @hw: pointer to the HW structure
++ *
++ * Clears hardware counters specific to the silicon family and calls
++ * clear_hw_cntrs_generic to clear all general purpose counters.
++ **/
++static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
++{
++ u32 temp;
++
++ e1000_clear_hw_cntrs_base(hw);
++
++ temp = er32(ALGNERRC);
++ temp = er32(RXERRC);
++ temp = er32(TNCRS);
++ temp = er32(CEXTERR);
++ temp = er32(TSCTC);
++ temp = er32(TSCTFC);
++
++ temp = er32(MGTPRC);
++ temp = er32(MGTPDC);
++ temp = er32(MGTPTC);
++
++ temp = er32(IAC);
++ temp = er32(ICRXOC);
++
++}
++
++static struct e1000_mac_operations ich8_mac_ops = {
++ .mng_mode_enab = E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
++ .check_for_link = e1000_check_for_copper_link,
++ .cleanup_led = e1000_cleanup_led_ich8lan,
++ .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
++ .get_bus_info = e1000_get_bus_info_ich8lan,
++ .get_link_up_info = e1000_get_link_up_info_ich8lan,
++ .led_on = e1000_led_on_ich8lan,
++ .led_off = e1000_led_off_ich8lan,
++ .mc_addr_list_update = e1000_mc_addr_list_update_generic,
++ .reset_hw = e1000_reset_hw_ich8lan,
++ .init_hw = e1000_init_hw_ich8lan,
++ .setup_link = e1000_setup_link_ich8lan,
++ .setup_physical_interface= e1000_setup_copper_link_ich8lan,
++};
++
++static struct e1000_phy_operations ich8_phy_ops = {
++ .acquire_phy = e1000_acquire_swflag_ich8lan,
++ .check_reset_block = e1000_check_reset_block_ich8lan,
++ .commit_phy = NULL,
++ .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
++ .get_cfg_done = e1000_get_cfg_done,
++ .get_cable_length = e1000_get_cable_length_igp_2,
++ .get_phy_info = e1000_get_phy_info_ich8lan,
++ .read_phy_reg = e1000_read_phy_reg_igp,
++ .release_phy = e1000_release_swflag_ich8lan,
++ .reset_phy = e1000_phy_hw_reset_ich8lan,
++ .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
++ .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
++ .write_phy_reg = e1000_write_phy_reg_igp,
++};
++
++static struct e1000_nvm_operations ich8_nvm_ops = {
++ .acquire_nvm = e1000_acquire_swflag_ich8lan,
++ .read_nvm = e1000_read_nvm_ich8lan,
++ .release_nvm = e1000_release_swflag_ich8lan,
++ .update_nvm = e1000_update_nvm_checksum_ich8lan,
++ .valid_led_default = e1000_valid_led_default_ich8lan,
++ .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
++ .write_nvm = e1000_write_nvm_ich8lan,
++};
++
++struct e1000_info e1000_ich8_info = {
++ .mac = e1000_ich8lan,
++ .flags = FLAG_HAS_WOL
++ | FLAG_RX_CSUM_ENABLED
++ | FLAG_HAS_CTRLEXT_ON_LOAD
++ | FLAG_HAS_AMT
++ | FLAG_HAS_FLASH
++ | FLAG_APME_IN_WUC,
++ .pba = 8,
++ .get_invariants = e1000_get_invariants_ich8lan,
++ .mac_ops = &ich8_mac_ops,
++ .phy_ops = &ich8_phy_ops,
++ .nvm_ops = &ich8_nvm_ops,
++};
++
++struct e1000_info e1000_ich9_info = {
++ .mac = e1000_ich9lan,
++ .flags = FLAG_HAS_JUMBO_FRAMES
++ | FLAG_HAS_WOL
++ | FLAG_RX_CSUM_ENABLED
++ | FLAG_HAS_CTRLEXT_ON_LOAD
++ | FLAG_HAS_AMT
++ | FLAG_HAS_ERT
++ | FLAG_HAS_FLASH
++ | FLAG_APME_IN_WUC,
++ .pba = 10,
++ .get_invariants = e1000_get_invariants_ich8lan,
++ .mac_ops = &ich8_mac_ops,
++ .phy_ops = &ich8_phy_ops,
++ .nvm_ops = &ich8_nvm_ops,
++};
++
+diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c
+new file mode 100644
+index 0000000..21c16e0
+--- /dev/null
++++ b/drivers/net/e1000e/lib.c
+@@ -0,0 +1,2528 @@
++/*******************************************************************************
++
++ Intel PRO/1000 Linux driver
++ Copyright(c) 1999 - 2007 Intel Corporation.
++
++ This program is free software; you can redistribute it and/or modify it
++ under the terms and conditions of the GNU General Public License,
++ version 2, as published by the Free Software Foundation.
++
++ This program is distributed in the hope it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
++ more details.
++
++ You should have received a copy of the GNU General Public License along with
++ this program; if not, write to the Free Software Foundation, Inc.,
++ 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++ The full GNU General Public License is included in this distribution in
++ the file called "COPYING".
++
++ Contact Information:
++ Linux NICS <linux.nics@intel.com>
++ e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
++ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++#include <linux/netdevice.h>
++#include <linux/pci.h>
++
++#include "e1000.h"
++
++enum e1000_mng_mode {
++ e1000_mng_mode_none = 0,
++ e1000_mng_mode_asf,
++ e1000_mng_mode_pt,
++ e1000_mng_mode_ipmi,
++ e1000_mng_mode_host_if_only
++};
++
++#define E1000_FACTPS_MNGCG 0x20000000
++
++#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management
++ * Technology signature */
++
++/**
++ * e1000_get_bus_info_pcie - Get PCIe bus information
++ * @hw: pointer to the HW structure
++ *
++ * Determines and stores the system bus information for a particular
++ * network interface. The following bus information is determined and stored:
++ * bus speed, bus width, type (PCIe), and PCIe function.
++ **/
++s32 e1000_get_bus_info_pcie(struct e1000_hw *hw)
++{
++ struct e1000_bus_info *bus = &hw->bus;
++ struct e1000_adapter *adapter = hw->adapter;
++ u32 status;
++ u16 pcie_link_status, pci_header_type, cap_offset;
++
++ cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
++ if (!cap_offset) {
++ bus->width = e1000_bus_width_unknown;
++ } else {
++ pci_read_config_word(adapter->pdev,
++ cap_offset + PCIE_LINK_STATUS,
++ &pcie_link_status);
++ bus->width = (enum e1000_bus_width)((pcie_link_status &
++ PCIE_LINK_WIDTH_MASK) >>
++ PCIE_LINK_WIDTH_SHIFT);
++ }
++
++ pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER,
++ &pci_header_type);
++ if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
++ status = er32(STATUS);
++ bus->func = (status & E1000_STATUS_FUNC_MASK)
++ >> E1000_STATUS_FUNC_SHIFT;
++ } else {
++ bus->func = 0;
++ }
++
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_write_vfta - Write value to VLAN filter table
++ * @hw: pointer to the HW structure
++ * @offset: register offset in VLAN filter table
++ * @value: register value written to VLAN filter table
++ *
++ * Writes value at the given offset in the register array which stores
++ * the VLAN filter table.
++ **/
++void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
++{
++ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
++ e1e_flush();
++}
++
++/**
++ * e1000_init_rx_addrs - Initialize receive address's
++ * @hw: pointer to the HW structure
++ * @rar_count: receive address registers
++ *
++ * Setups the receive address registers by setting the base receive address
++ * register to the devices MAC address and clearing all the other receive
++ * address registers to 0.
++ **/
++void e1000_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
++{
++ u32 i;
++
++ /* Setup the receive address */
++ hw_dbg(hw, "Programming MAC Address into RAR[0]\n");
++
++ e1000_rar_set(hw, hw->mac.addr, 0);
++
++ /* Zero out the other (rar_entry_count - 1) receive addresses */
++ hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1);
++ for (i = 1; i < rar_count; i++) {
++ E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
++ e1e_flush();
++ E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
++ e1e_flush();
++ }
++}
++
++/**
++ * e1000_rar_set - Set receive address register
++ * @hw: pointer to the HW structure
++ * @addr: pointer to the receive address
++ * @index: receive address array register
++ *
++ * Sets the receive address array register at index to the address passed
++ * in by addr.
++ **/
++void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
++{
++ u32 rar_low, rar_high;
++
++ /* HW expects these in little endian so we reverse the byte order
++ * from network order (big endian) to little endian
++ */
++ rar_low = ((u32) addr[0] |
++ ((u32) addr[1] << 8) |
++ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
++
++ rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
++
++ rar_high |= E1000_RAH_AV;
++
++ E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
++ E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
++}
++
++/**
++ * e1000_mta_set - Set multicast filter table address
++ * @hw: pointer to the HW structure
++ * @hash_value: determines the MTA register and bit to set
++ *
++ * The multicast table address is a register array of 32-bit registers.
++ * The hash_value is used to determine what register the bit is in, the
++ * current value is read, the new bit is OR'd in and the new value is
++ * written back into the register.
++ **/
++static void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
++{
++ u32 hash_bit, hash_reg, mta;
++
++ /* The MTA is a register array of 32-bit registers. It is
++ * treated like an array of (32*mta_reg_count) bits. We want to
++ * set bit BitArray[hash_value]. So we figure out what register
++ * the bit is in, read it, OR in the new bit, then write
++ * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
++ * mask to bits 31:5 of the hash value which gives us the
++ * register we're modifying. The hash bit within that register
++ * is determined by the lower 5 bits of the hash value.
++ */
++ hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
++ hash_bit = hash_value & 0x1F;
++
++ mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
++
++ mta |= (1 << hash_bit);
++
++ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
++ e1e_flush();
++}
++
++/**
++ * e1000_hash_mc_addr - Generate a multicast hash value
++ * @hw: pointer to the HW structure
++ * @mc_addr: pointer to a multicast address
++ *
++ * Generates a multicast address hash value which is used to determine
++ * the multicast filter table array address and new table value. See
++ * e1000_mta_set_generic()
++ **/
++static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
++{
++ u32 hash_value, hash_mask;
++ u8 bit_shift = 0;
++
++ /* Register count multiplied by bits per register */
++ hash_mask = (hw->mac.mta_reg_count * 32) - 1;
++
++ /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
++ * where 0xFF would still fall within the hash mask. */
++ while (hash_mask >> bit_shift != 0xFF)
++ bit_shift++;
++
++ /* The portion of the address that is used for the hash table
++ * is determined by the mc_filter_type setting.
++ * The algorithm is such that there is a total of 8 bits of shifting.
++ * The bit_shift for a mc_filter_type of 0 represents the number of
++ * left-shifts where the MSB of mc_addr[5] would still fall within
++ * the hash_mask. Case 0 does this exactly. Since there are a total
++ * of 8 bits of shifting, then mc_addr[4] will shift right the
++ * remaining number of bits. Thus 8 - bit_shift. The rest of the
++ * cases are a variation of this algorithm...essentially raising the
++ * number of bits to shift mc_addr[5] left, while still keeping the
++ * 8-bit shifting total.
++ */
++ /* For example, given the following Destination MAC Address and an
++ * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
++ * we can see that the bit_shift for case 0 is 4. These are the hash
++ * values resulting from each mc_filter_type...
++ * [0] [1] [2] [3] [4] [5]
++ * 01 AA 00 12 34 56
++ * LSB MSB
++ *
++ * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
++ * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
++ * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
++ * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
++ */
++ switch (hw->mac.mc_filter_type) {
++ default:
++ case 0:
++ break;
++ case 1:
++ bit_shift += 1;
++ break;
++ case 2:
++ bit_shift += 2;
++ break;
++ case 3:
++ bit_shift += 4;
++ break;
++ }
++
++ hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
++ (((u16) mc_addr[5]) << bit_shift)));
++
++ return hash_value;
++}
++
++/**
++ * e1000_mc_addr_list_update_generic - Update Multicast addresses
++ * @hw: pointer to the HW structure
++ * @mc_addr_list: array of multicast addresses to program
++ * @mc_addr_count: number of multicast addresses to program
++ * @rar_used_count: the first RAR register free to program
++ * @rar_count: total number of supported Receive Address Registers
++ *
++ * Updates the Receive Address Registers and Multicast Table Array.
++ * The caller must have a packed mc_addr_list of multicast addresses.
++ * The parameter rar_count will usually be hw->mac.rar_entry_count
++ * unless there are workarounds that change this.
++ **/
++void e1000_mc_addr_list_update_generic(struct e1000_hw *hw,
++ u8 *mc_addr_list, u32 mc_addr_count,
++ u32 rar_used_count, u32 rar_count)
++{
++ u32 hash_value;
++ u32 i;
++
++ /* Load the first set of multicast addresses into the exact
++ * filters (RAR). If there are not enough to fill the RAR
++ * array, clear the filters.
++ */
++ for (i = rar_used_count; i < rar_count; i++) {
++ if (mc_addr_count) {
++ e1000_rar_set(hw, mc_addr_list, i);
++ mc_addr_count--;
++ mc_addr_list += ETH_ALEN;
++ } else {
++ E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
++ e1e_flush();
++ E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
++ e1e_flush();
++ }
++ }
++
++ /* Clear the old settings from the MTA */
++ hw_dbg(hw, "Clearing MTA\n");
++ for (i = 0; i < hw->mac.mta_reg_count; i++) {
++ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
++ e1e_flush();
++ }
++
++ /* Load any remaining multicast addresses into the hash table. */
++ for (; mc_addr_count > 0; mc_addr_count--) {
++ hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
++ hw_dbg(hw, "Hash value = 0x%03X\n", hash_value);
++ e1000_mta_set(hw, hash_value);
++ mc_addr_list += ETH_ALEN;
++ }
++}
++
++/**
++ * e1000_clear_hw_cntrs_base - Clear base hardware counters
++ * @hw: pointer to the HW structure
++ *
++ * Clears the base hardware counters by reading the counter registers.
++ **/
++void e1000_clear_hw_cntrs_base(struct e1000_hw *hw)
++{
++ u32 temp;
++
++ temp = er32(CRCERRS);
++ temp = er32(SYMERRS);
++ temp = er32(MPC);
++ temp = er32(SCC);
++ temp = er32(ECOL);
++ temp = er32(MCC);
++ temp = er32(LATECOL);
++ temp = er32(COLC);
++ temp = er32(DC);
++ temp = er32(SEC);
++ temp = er32(RLEC);
++ temp = er32(XONRXC);
++ temp = er32(XONTXC);
++ temp = er32(XOFFRXC);
++ temp = er32(XOFFTXC);
++ temp = er32(FCRUC);
++ temp = er32(GPRC);
++ temp = er32(BPRC);
++ temp = er32(MPRC);
++ temp = er32(GPTC);
++ temp = er32(GORCL);
++ temp = er32(GORCH);
++ temp = er32(GOTCL);
++ temp = er32(GOTCH);
++ temp = er32(RNBC);
++ temp = er32(RUC);
++ temp = er32(RFC);
++ temp = er32(ROC);
++ temp = er32(RJC);
++ temp = er32(TORL);
++ temp = er32(TORH);
++ temp = er32(TOTL);
++ temp = er32(TOTH);
++ temp = er32(TPR);
++ temp = er32(TPT);
++ temp = er32(MPTC);
++ temp = er32(BPTC);
++}
++
++/**
++ * e1000_check_for_copper_link - Check for link (Copper)
++ * @hw: pointer to the HW structure
++ *
++ * Checks to see of the link status of the hardware has changed. If a
++ * change in link status has been detected, then we read the PHY registers
++ * to get the current speed/duplex if link exists.
++ **/
++s32 e1000_check_for_copper_link(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ s32 ret_val;
++ bool link;
++
++ /* We only want to go out to the PHY registers to see if Auto-Neg
++ * has completed and/or if our link status has changed. The
++ * get_link_status flag is set upon receiving a Link Status
++ * Change or Rx Sequence Error interrupt.
++ */
++ if (!mac->get_link_status) {
++ ret_val = E1000_SUCCESS;
++ goto out;
++ }
++
++ /* First we want to see if the MII Status Register reports
++ * link. If so, then we want to get the current speed/duplex
++ * of the PHY.
++ */
++ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++ if (ret_val)
++ goto out;
++
++ if (!link)
++ goto out; /* No link detected */
++
++ mac->get_link_status = 0;
++
++ /* Check if there was DownShift, must be checked
++ * immediately after link-up */
++ e1000_check_downshift(hw);
++
++ /* If we are forcing speed/duplex, then we simply return since
++ * we have already determined whether we have link or not.
++ */
++ if (!mac->autoneg) {
++ ret_val = -E1000_ERR_CONFIG;
++ goto out;
++ }
++
++ /* Auto-Neg is enabled. Auto Speed Detection takes care
++ * of MAC speed/duplex configuration. So we only need to
++ * configure Collision Distance in the MAC.
++ */
++ e1000_config_collision_dist(hw);
++
++ /* Configure Flow Control now that Auto-Neg has completed.
++ * First, we need to restore the desired flow control
++ * settings because we may have had to re-autoneg with a
++ * different link partner.
++ */
++ ret_val = e1000_config_fc_after_link_up(hw);
++ if (ret_val) {
++ hw_dbg(hw, "Error configuring flow control\n");
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_check_for_fiber_link - Check for link (Fiber)
++ * @hw: pointer to the HW structure
++ *
++ * Checks for link up on the hardware. If link is not up and we have
++ * a signal, then we need to force link up.
++ **/
++s32 e1000_check_for_fiber_link(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ u32 rxcw;
++ u32 ctrl;
++ u32 status;
++ s32 ret_val = E1000_SUCCESS;
++
++ ctrl = er32(CTRL);
++ status = er32(STATUS);
++ rxcw = er32(RXCW);
++
++ /* If we don't have link (auto-negotiation failed or link partner
++ * cannot auto-negotiate), the cable is plugged in (we have signal),
++ * and our link partner is not trying to auto-negotiate with us (we
++ * are receiving idles or data), we need to force link up. We also
++ * need to give auto-negotiation time to complete, in case the cable
++ * was just plugged in. The autoneg_failed flag does this.
++ */
++ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
++ if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
++ (!(rxcw & E1000_RXCW_C))) {
++ if (mac->autoneg_failed == 0) {
++ mac->autoneg_failed = 1;
++ goto out;
++ }
++ hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
++
++ /* Disable auto-negotiation in the TXCW register */
++ ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
++
++ /* Force link-up and also force full-duplex. */
++ ctrl = er32(CTRL);
++ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
++ ew32(CTRL, ctrl);
++
++ /* Configure Flow Control after forcing link up. */
++ ret_val = e1000_config_fc_after_link_up(hw);
++ if (ret_val) {
++ hw_dbg(hw, "Error configuring flow control\n");
++ goto out;
++ }
++ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
++ /* If we are forcing link and we are receiving /C/ ordered
++ * sets, re-enable auto-negotiation in the TXCW register
++ * and disable forced link in the Device Control register
++ * in an attempt to auto-negotiate with our link partner.
++ */
++ hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
++ ew32(TXCW, mac->txcw);
++ ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
++
++ mac->serdes_has_link = 1;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_check_for_serdes_link - Check for link (Serdes)
++ * @hw: pointer to the HW structure
++ *
++ * Checks for link up on the hardware. If link is not up and we have
++ * a signal, then we need to force link up.
++ **/
++s32 e1000_check_for_serdes_link(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ u32 rxcw;
++ u32 ctrl;
++ u32 status;
++ s32 ret_val = E1000_SUCCESS;
++
++ ctrl = er32(CTRL);
++ status = er32(STATUS);
++ rxcw = er32(RXCW);
++
++ /* If we don't have link (auto-negotiation failed or link partner
++ * cannot auto-negotiate), and our link partner is not trying to
++ * auto-negotiate with us (we are receiving idles or data),
++ * we need to force link up. We also need to give auto-negotiation
++ * time to complete.
++ */
++ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
++ if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
++ if (mac->autoneg_failed == 0) {
++ mac->autoneg_failed = 1;
++ goto out;
++ }
++ hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
++
++ /* Disable auto-negotiation in the TXCW register */
++ ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
++
++ /* Force link-up and also force full-duplex. */
++ ctrl = er32(CTRL);
++ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
++ ew32(CTRL, ctrl);
++
++ /* Configure Flow Control after forcing link up. */
++ ret_val = e1000_config_fc_after_link_up(hw);
++ if (ret_val) {
++ hw_dbg(hw, "Error configuring flow control\n");
++ goto out;
++ }
++ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
++ /* If we are forcing link and we are receiving /C/ ordered
++ * sets, re-enable auto-negotiation in the TXCW register
++ * and disable forced link in the Device Control register
++ * in an attempt to auto-negotiate with our link partner.
++ */
++ hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
++ ew32(TXCW, mac->txcw);
++ ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
++
++ mac->serdes_has_link = 1;
++ } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
++ /* If we force link for non-auto-negotiation switch, check
++ * link status based on MAC synchronization for internal
++ * serdes media type.
++ */
++ /* SYNCH bit and IV bit are sticky. */
++ udelay(10);
++ if (E1000_RXCW_SYNCH & er32(RXCW)) {
++ if (!(rxcw & E1000_RXCW_IV)) {
++ mac->serdes_has_link = 1;
++ hw_dbg(hw, "SERDES: Link is up.\n");
++ }
++ } else {
++ mac->serdes_has_link = 0;
++ hw_dbg(hw, "SERDES: Link is down.\n");
++ }
++ }
++
++ if (E1000_TXCW_ANE & er32(TXCW)) {
++ status = er32(STATUS);
++ mac->serdes_has_link = (status & E1000_STATUS_LU);
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_set_default_fc_generic - Set flow control default values
++ * @hw: pointer to the HW structure
++ *
++ * Read the EEPROM for the default values for flow control and store the
++ * values.
++ **/
++static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ s32 ret_val = E1000_SUCCESS;
++ u16 nvm_data;
++
++ if (mac->fc != e1000_fc_default)
++ goto out;
++
++ /* Read and store word 0x0F of the EEPROM. This word contains bits
++ * that determine the hardware's default PAUSE (flow control) mode,
++ * a bit that determines whether the HW defaults to enabling or
++ * disabling auto-negotiation, and the direction of the
++ * SW defined pins. If there is no SW over-ride of the flow
++ * control setting, then the variable hw->fc will
++ * be initialized based on a value in the EEPROM.
++ */
++ ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
++
++ if (ret_val) {
++ hw_dbg(hw, "NVM Read Error\n");
++ goto out;
++ }
++
++ if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
++ mac->fc = e1000_fc_none;
++ else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
++ NVM_WORD0F_ASM_DIR)
++ mac->fc = e1000_fc_tx_pause;
++ else
++ mac->fc = e1000_fc_full;
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_setup_link - Setup flow control and link settings
++ * @hw: pointer to the HW structure
++ *
++ * Determines which flow control settings to use, then configures flow
++ * control. Calls the appropriate media-specific link configuration
++ * function. Assuming the adapter has a valid link partner, a valid link
++ * should be established. Assumes the hardware has previously been reset
++ * and the transmitter and receiver are not enabled.
++ **/
++s32 e1000_setup_link(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ s32 ret_val = E1000_SUCCESS;
++
++ /* In the case of the phy reset being blocked, we already have a link.
++ * We do not need to set it up again.
++ */
++ if (e1000_check_reset_block(hw))
++ goto out;
++
++ ret_val = e1000_set_default_fc_generic(hw);
++ if (ret_val)
++ goto out;
++
++ /* We want to save off the original Flow Control configuration just
++ * in case we get disconnected and then reconnected into a different
++ * hub or switch with different Flow Control capabilities.
++ */
++ mac->original_fc = mac->fc;
++
++ hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc);
++
++ /* Call the necessary media_type subroutine to configure the link. */
++ ret_val = mac->ops.setup_physical_interface(hw);
++ if (ret_val)
++ goto out;
++
++ /* Initialize the flow control address, type, and PAUSE timer
++ * registers to their default values. This is done even if flow
++ * control is disabled, because it does not hurt anything to
++ * initialize these registers.
++ */
++ hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n");
++ ew32(FCT, FLOW_CONTROL_TYPE);
++ ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
++ ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
++
++ ew32(FCTTV, mac->fc_pause_time);
++
++ ret_val = e1000_set_fc_watermarks(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_commit_fc_settings_generic - Configure flow control
++ * @hw: pointer to the HW structure
++ *
++ * Write the flow control settings to the Transmit Config Word Register (TXCW)
++ * base on the flow control settings in e1000_mac_info.
++ **/
++static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ u32 txcw;
++ s32 ret_val = E1000_SUCCESS;
++
++ /* Check for a software override of the flow control settings, and
++ * setup the device accordingly. If auto-negotiation is enabled, then
++ * software will have to set the "PAUSE" bits to the correct value in
++ * the Transmit Config Word Register (TXCW) and re-start auto-
++ * negotiation. However, if auto-negotiation is disabled, then
++ * software will have to manually configure the two flow control enable
++ * bits in the CTRL register.
++ *
++ * The possible values of the "fc" parameter are:
++ * 0: Flow control is completely disabled
++ * 1: Rx flow control is enabled (we can receive pause frames,
++ * but not send pause frames).
++ * 2: Tx flow control is enabled (we can send pause frames but we
++ * do not support receiving pause frames).
++ * 3: Both Rx and TX flow control (symmetric) are enabled.
++ */
++ switch (mac->fc) {
++ case e1000_fc_none:
++ /* Flow control completely disabled by a software over-ride. */
++ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
++ break;
++ case e1000_fc_rx_pause:
++ /* RX Flow control is enabled and TX Flow control is disabled
++ * by a software over-ride. Since there really isn't a way to
++ * advertise that we are capable of RX Pause ONLY, we will
++ * advertise that we support both symmetric and asymmetric RX
++ * PAUSE. Later, we will disable the adapter's ability to send
++ * PAUSE frames.
++ */
++ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
++ break;
++ case e1000_fc_tx_pause:
++ /* TX Flow control is enabled, and RX Flow control is disabled,
++ * by a software over-ride.
++ */
++ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
++ break;
++ case e1000_fc_full:
++ /* Flow control (both RX and TX) is enabled by a software
++ * over-ride.
++ */
++ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
++ break;
++ default:
++ hw_dbg(hw, "Flow control param set incorrectly\n");
++ ret_val = -E1000_ERR_CONFIG;
++ goto out;
++ break;
++ }
++
++ ew32(TXCW, txcw);
++ mac->txcw = txcw;
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_poll_fiber_serdes_link_generic - Poll for link up
++ * @hw: pointer to the HW structure
++ *
++ * Polls for link up by reading the status register, if link fails to come
++ * up with auto-negotiation, then the link is forced if a signal is detected.
++ **/
++static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ u32 i, status;
++ s32 ret_val = E1000_SUCCESS;
++
++ /* If we have a signal (the cable is plugged in, or assumed true for
++ * serdes media) then poll for a "Link-Up" indication in the Device
++ * Status Register. Time-out if a link isn't seen in 500 milliseconds
++ * seconds (Auto-negotiation should complete in less than 500
++ * milliseconds even if the other end is doing it in SW).
++ */
++ for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
++ msleep(10);
++ status = er32(STATUS);
++ if (status & E1000_STATUS_LU)
++ break;
++ }
++ if (i == FIBER_LINK_UP_LIMIT) {
++ hw_dbg(hw, "Never got a valid link from auto-neg!!!\n");
++ mac->autoneg_failed = 1;
++ /* AutoNeg failed to achieve a link, so we'll call
++ * mac->check_for_link. This routine will force the
++ * link up if we detect a signal. This will allow us to
++ * communicate with non-autonegotiating link partners.
++ */
++ ret_val = mac->ops.check_for_link(hw);
++ if (ret_val) {
++ hw_dbg(hw, "Error while checking for link\n");
++ goto out;
++ }
++ mac->autoneg_failed = 0;
++ } else {
++ mac->autoneg_failed = 0;
++ hw_dbg(hw, "Valid Link Found\n");
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_setup_fiber_serdes_link - Setup link for fiber/serdes
++ * @hw: pointer to the HW structure
++ *
++ * Configures collision distance and flow control for fiber and serdes
++ * links. Upon successful setup, poll for link.
++ **/
++s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
++{
++ u32 ctrl;
++ s32 ret_val = E1000_SUCCESS;
++
++ ctrl = er32(CTRL);
++
++ /* Take the link out of reset */
++ ctrl &= ~E1000_CTRL_LRST;
++
++ e1000_config_collision_dist(hw);
++
++ ret_val = e1000_commit_fc_settings_generic(hw);
++ if (ret_val)
++ goto out;
++
++ /* Since auto-negotiation is enabled, take the link out of reset (the
++ * link will be in reset, because we previously reset the chip). This
++ * will restart auto-negotiation. If auto-negotiation is successful
++ * then the link-up status bit will be set and the flow control enable
++ * bits (RFCE and TFCE) will be set according to their negotiated value.
++ */
++ hw_dbg(hw, "Auto-negotiation enabled\n");
++
++ ew32(CTRL, ctrl);
++ e1e_flush();
++ msleep(1);
++
++ /* For these adapters, the SW defineable pin 1 is set when the optics
++ * detect a signal. If we have a signal, then poll for a "Link-Up"
++ * indication.
++ */
++ if (hw->media_type == e1000_media_type_internal_serdes ||
++ (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
++ ret_val = e1000_poll_fiber_serdes_link_generic(hw);
++ } else {
++ hw_dbg(hw, "No signal detected\n");
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_config_collision_dist - Configure collision distance
++ * @hw: pointer to the HW structure
++ *
++ * Configures the collision distance to the default value and is used
++ * during link setup. Currently no func pointer exists and all
++ * implementations are handled in the generic version of this function.
++ **/
++void e1000_config_collision_dist(struct e1000_hw *hw)
++{
++ u32 tctl;
++
++ tctl = er32(TCTL);
++
++ tctl &= ~E1000_TCTL_COLD;
++ tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
++
++ ew32(TCTL, tctl);
++ e1e_flush();
++}
++
++/**
++ * e1000_set_fc_watermarks - Set flow control high/low watermarks
++ * @hw: pointer to the HW structure
++ *
++ * Sets the flow control high/low threshold (watermark) registers. If
++ * flow control XON frame transmission is enabled, then set XON frame
++ * tansmission as well.
++ **/
++s32 e1000_set_fc_watermarks(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ s32 ret_val = E1000_SUCCESS;
++ u32 fcrtl = 0, fcrth = 0;
++
++ /* Set the flow control receive threshold registers. Normally,
++ * these registers will be set to a default threshold that may be
++ * adjusted later by the driver's runtime code. However, if the
++ * ability to transmit pause frames is not enabled, then these
++ * registers will be set to 0.
++ */
++ if (mac->fc & e1000_fc_tx_pause) {
++ /* We need to set up the Receive Threshold high and low water
++ * marks as well as (optionally) enabling the transmission of
++ * XON frames.
++ */
++ fcrtl = mac->fc_low_water;
++ fcrtl |= E1000_FCRTL_XONE;
++
++ fcrth = mac->fc_high_water;
++ }
++ ew32(FCRTL, fcrtl);
++ ew32(FCRTH, fcrth);
++
++ return ret_val;
++}
++
++/**
++ * e1000_force_mac_fc - Force the MAC's flow control settings
++ * @hw: pointer to the HW structure
++ *
++ * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
++ * device control register to reflect the adapter settings. TFCE and RFCE
++ * need to be explicitly set by software when a copper PHY is used because
++ * autonegotiation is managed by the PHY rather than the MAC. Software must
++ * also configure these bits when link is forced on a fiber connection.
++ **/
++s32 e1000_force_mac_fc(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ u32 ctrl;
++ s32 ret_val = E1000_SUCCESS;
++
++ ctrl = er32(CTRL);
++
++ /* Because we didn't get link via the internal auto-negotiation
++ * mechanism (we either forced link or we got link via PHY
++ * auto-neg), we have to manually enable/disable transmit an
++ * receive flow control.
++ *
++ * The "Case" statement below enables/disable flow control
++ * according to the "mac->fc" parameter.
++ *
++ * The possible values of the "fc" parameter are:
++ * 0: Flow control is completely disabled
++ * 1: Rx flow control is enabled (we can receive pause
++ * frames but not send pause frames).
++ * 2: Tx flow control is enabled (we can send pause frames
++ * frames but we do not receive pause frames).
++ * 3: Both Rx and TX flow control (symmetric) is enabled.
++ * other: No other values should be possible at this point.
++ */
++ hw_dbg(hw, "mac->fc = %u\n", mac->fc);
++
++ switch (mac->fc) {
++ case e1000_fc_none:
++ ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
++ break;
++ case e1000_fc_rx_pause:
++ ctrl &= (~E1000_CTRL_TFCE);
++ ctrl |= E1000_CTRL_RFCE;
++ break;
++ case e1000_fc_tx_pause:
++ ctrl &= (~E1000_CTRL_RFCE);
++ ctrl |= E1000_CTRL_TFCE;
++ break;
++ case e1000_fc_full:
++ ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
++ break;
++ default:
++ hw_dbg(hw, "Flow control param set incorrectly\n");
++ ret_val = -E1000_ERR_CONFIG;
++ goto out;
++ }
++
++ ew32(CTRL, ctrl);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_config_fc_after_link_up - Configures flow control after link
++ * @hw: pointer to the HW structure
++ *
++ * Checks the status of auto-negotiation after link up to ensure that the
++ * speed and duplex were not forced. If the link needed to be forced, then
++ * flow control needs to be forced also. If auto-negotiation is enabled
++ * and did not fail, then we configure flow control based on our link
++ * partner.
++ **/
++s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ s32 ret_val = E1000_SUCCESS;
++ u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
++ u16 speed, duplex;
++
++ /* Check for the case where we have fiber media and auto-neg failed
++ * so we had to force link. In this case, we need to force the
++ * configuration of the MAC to match the "fc" parameter.
++ */
++ if (mac->autoneg_failed) {
++ if (hw->media_type == e1000_media_type_fiber ||
++ hw->media_type == e1000_media_type_internal_serdes)
++ ret_val = e1000_force_mac_fc(hw);
++ } else {
++ if (hw->media_type == e1000_media_type_copper)
++ ret_val = e1000_force_mac_fc(hw);
++ }
++
++ if (ret_val) {
++ hw_dbg(hw, "Error forcing flow control settings\n");
++ goto out;
++ }
++
++ /* Check for the case where we have copper media and auto-neg is
++ * enabled. In this case, we need to check and see if Auto-Neg
++ * has completed, and if so, how the PHY and link partner has
++ * flow control configured.
++ */
++ if ((hw->media_type == e1000_media_type_copper) && mac->autoneg) {
++ /* Read the MII Status Register and check to see if AutoNeg
++ * has completed. We read this twice because this reg has
++ * some "sticky" (latched) bits.
++ */
++ ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
++ if (ret_val)
++ goto out;
++ ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
++ if (ret_val)
++ goto out;
++
++ if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
++ hw_dbg(hw, "Copper PHY and Auto Neg "
++ "has not completed.\n");
++ goto out;
++ }
++
++ /* The AutoNeg process has completed, so we now need to
++ * read both the Auto Negotiation Advertisement
++ * Register (Address 4) and the Auto_Negotiation Base
++ * Page Ability Register (Address 5) to determine how
++ * flow control was negotiated.
++ */
++ ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
++ if (ret_val)
++ goto out;
++ ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
++ if (ret_val)
++ goto out;
++
++ /* Two bits in the Auto Negotiation Advertisement Register
++ * (Address 4) and two bits in the Auto Negotiation Base
++ * Page Ability Register (Address 5) determine flow control
++ * for both the PHY and the link partner. The following
++ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
++ * 1999, describes these PAUSE resolution bits and how flow
++ * control is determined based upon these settings.
++ * NOTE: DC = Don't Care
++ *
++ * LOCAL DEVICE | LINK PARTNER
++ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
++ *-------|---------|-------|---------|--------------------
++ * 0 | 0 | DC | DC | e1000_fc_none
++ * 0 | 1 | 0 | DC | e1000_fc_none
++ * 0 | 1 | 1 | 0 | e1000_fc_none
++ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
++ * 1 | 0 | 0 | DC | e1000_fc_none
++ * 1 | DC | 1 | DC | e1000_fc_full
++ * 1 | 1 | 0 | 0 | e1000_fc_none
++ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
++ *
++ */
++ /* Are both PAUSE bits set to 1? If so, this implies
++ * Symmetric Flow Control is enabled at both ends. The
++ * ASM_DIR bits are irrelevant per the spec.
++ *
++ * For Symmetric Flow Control:
++ *
++ * LOCAL DEVICE | LINK PARTNER
++ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
++ *-------|---------|-------|---------|--------------------
++ * 1 | DC | 1 | DC | E1000_fc_full
++ *
++ */
++ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
++ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
++ /* Now we need to check if the user selected RX ONLY
++ * of pause frames. In this case, we had to advertise
++ * FULL flow control because we could not advertise RX
++ * ONLY. Hence, we must now check to see if we need to
++ * turn OFF the TRANSMISSION of PAUSE frames.
++ */
++ if (mac->original_fc == e1000_fc_full) {
++ mac->fc = e1000_fc_full;
++ hw_dbg(hw, "Flow Control = FULL.\r\n");
++ } else {
++ mac->fc = e1000_fc_rx_pause;
++ hw_dbg(hw, "Flow Control = "
++ "RX PAUSE frames only.\r\n");
++ }
++ }
++ /* For receiving PAUSE frames ONLY.
++ *
++ * LOCAL DEVICE | LINK PARTNER
++ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
++ *-------|---------|-------|---------|--------------------
++ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
++ *
++ */
++ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
++ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
++ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
++ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
++ mac->fc = e1000_fc_tx_pause;
++ hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n");
++ }
++ /* For transmitting PAUSE frames ONLY.
++ *
++ * LOCAL DEVICE | LINK PARTNER
++ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
++ *-------|---------|-------|---------|--------------------
++ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
++ *
++ */
++ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
++ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
++ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
++ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
++ mac->fc = e1000_fc_rx_pause;
++ hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
++ }
++ /* Per the IEEE spec, at this point flow control should be
++ * disabled. However, we want to consider that we could
++ * be connected to a legacy switch that doesn't advertise
++ * desired flow control, but can be forced on the link
++ * partner. So if we advertised no flow control, that is
++ * what we will resolve to. If we advertised some kind of
++ * receive capability (Rx Pause Only or Full Flow Control)
++ * and the link partner advertised none, we will configure
++ * ourselves to enable Rx Flow Control only. We can do
++ * this safely for two reasons: If the link partner really
++ * didn't want flow control enabled, and we enable Rx, no
++ * harm done since we won't be receiving any PAUSE frames
++ * anyway. If the intent on the link partner was to have
++ * flow control enabled, then by us enabling RX only, we
++ * can at least receive pause frames and process them.
++ * This is a good idea because in most cases, since we are
++ * predominantly a server NIC, more times than not we will
++ * be asked to delay transmission of packets than asking
++ * our link partner to pause transmission of frames.
++ */
++ else if ((mac->original_fc == e1000_fc_none) ||
++ (mac->original_fc == e1000_fc_tx_pause)) {
++ mac->fc = e1000_fc_none;
++ hw_dbg(hw, "Flow Control = NONE.\r\n");
++ } else {
++ mac->fc = e1000_fc_rx_pause;
++ hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
++ }
++
++ /* Now we need to do one last check... If we auto-
++ * negotiated to HALF DUPLEX, flow control should not be
++ * enabled per IEEE 802.3 spec.
++ */
++ ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
++ if (ret_val) {
++ hw_dbg(hw, "Error getting link speed and duplex\n");
++ goto out;
++ }
++
++ if (duplex == HALF_DUPLEX)
++ mac->fc = e1000_fc_none;
++
++ /* Now we call a subroutine to actually force the MAC
++ * controller to use the correct flow control settings.
++ */
++ ret_val = e1000_force_mac_fc(hw);
++ if (ret_val) {
++ hw_dbg(hw, "Error forcing flow control settings\n");
++ goto out;
++ }
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_get_speed_and_duplex_copper - Retreive current speed/duplex
++ * @hw: pointer to the HW structure
++ * @speed: stores the current speed
++ * @duplex: stores the current duplex
++ *
++ * Read the status register for the current speed/duplex and store the current
++ * speed and duplex for copper connections.
++ **/
++s32 e1000_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
++{
++ u32 status;
++
++ status = er32(STATUS);
++ if (status & E1000_STATUS_SPEED_1000) {
++ *speed = SPEED_1000;
++ hw_dbg(hw, "1000 Mbs, ");
++ } else if (status & E1000_STATUS_SPEED_100) {
++ *speed = SPEED_100;
++ hw_dbg(hw, "100 Mbs, ");
++ } else {
++ *speed = SPEED_10;
++ hw_dbg(hw, "10 Mbs, ");
++ }
++
++ if (status & E1000_STATUS_FD) {
++ *duplex = FULL_DUPLEX;
++ hw_dbg(hw, "Full Duplex\n");
++ } else {
++ *duplex = HALF_DUPLEX;
++ hw_dbg(hw, "Half Duplex\n");
++ }
++
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_get_speed_and_duplex_fiber_serdes - Retreive current speed/duplex
++ * @hw: pointer to the HW structure
++ * @speed: stores the current speed
++ * @duplex: stores the current duplex
++ *
++ * Sets the speed and duplex to gigabit full duplex (the only possible option)
++ * for fiber/serdes links.
++ **/
++s32 e1000_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
++{
++ *speed = SPEED_1000;
++ *duplex = FULL_DUPLEX;
++
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_get_hw_semaphore - Acquire hardware semaphore
++ * @hw: pointer to the HW structure
++ *
++ * Acquire the HW semaphore to access the PHY or NVM
++ **/
++s32 e1000_get_hw_semaphore(struct e1000_hw *hw)
++{
++ u32 swsm;
++ s32 ret_val = E1000_SUCCESS;
++ s32 timeout = hw->nvm.word_size + 1;
++ s32 i = 0;
++
++ /* Get the SW semaphore */
++ while (i < timeout) {
++ swsm = er32(SWSM);
++ if (!(swsm & E1000_SWSM_SMBI))
++ break;
++
++ udelay(50);
++ i++;
++ }
++
++ if (i == timeout) {
++ hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n");
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++ /* Get the FW semaphore. */
++ for (i = 0; i < timeout; i++) {
++ swsm = er32(SWSM);
++ ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
++
++ /* Semaphore acquired if bit latched */
++ if (er32(SWSM) & E1000_SWSM_SWESMBI)
++ break;
++
++ udelay(50);
++ }
++
++ if (i == timeout) {
++ /* Release semaphores */
++ e1000_put_hw_semaphore(hw);
++ hw_dbg(hw, "Driver can't access the NVM\n");
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_put_hw_semaphore - Release hardware semaphore
++ * @hw: pointer to the HW structure
++ *
++ * Release hardware semaphore used to access the PHY or NVM
++ **/
++void e1000_put_hw_semaphore(struct e1000_hw *hw)
++{
++ u32 swsm;
++
++ swsm = er32(SWSM);
++
++ swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
++
++ ew32(SWSM, swsm);
++}
++
++/**
++ * e1000_get_auto_rd_done - Check for auto read completion
++ * @hw: pointer to the HW structure
++ *
++ * Check EEPROM for Auto Read done bit.
++ **/
++s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
++{
++ s32 i = 0;
++ s32 ret_val = E1000_SUCCESS;
++
++ while (i < AUTO_READ_DONE_TIMEOUT) {
++ if (er32(EECD) & E1000_EECD_AUTO_RD)
++ break;
++ msleep(1);
++ i++;
++ }
++
++ if (i == AUTO_READ_DONE_TIMEOUT) {
++ hw_dbg(hw, "Auto read by HW from NVM has not completed.\n");
++ ret_val = -E1000_ERR_RESET;
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_valid_led_default - Verify a valid default LED config
++ * @hw: pointer to the HW structure
++ * @data: pointer to the NVM (EEPROM)
++ *
++ * Read the EEPROM for the current default LED configuration. If the
++ * LED configuration is not valid, set to a valid LED configuration.
++ **/
++s32 e1000_valid_led_default(struct e1000_hw *hw, u16 *data)
++{
++ s32 ret_val;
++
++ ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
++ if (ret_val) {
++ hw_dbg(hw, "NVM Read Error\n");
++ goto out;
++ }
++
++ if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
++ *data = ID_LED_DEFAULT;
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_id_led_init -
++ * @hw: pointer to the HW structure
++ *
++ **/
++s32 e1000_id_led_init(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ s32 ret_val;
++ const u32 ledctl_mask = 0x000000FF;
++ const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
++ const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
++ u16 data, i, temp;
++ const u16 led_mask = 0x0F;
++
++ ret_val = hw->nvm.ops.valid_led_default(hw, &data);
++ if (ret_val)
++ goto out;
++
++ mac->ledctl_default = er32(LEDCTL);
++ mac->ledctl_mode1 = mac->ledctl_default;
++ mac->ledctl_mode2 = mac->ledctl_default;
++
++ for (i = 0; i < 4; i++) {
++ temp = (data >> (i << 2)) & led_mask;
++ switch (temp) {
++ case ID_LED_ON1_DEF2:
++ case ID_LED_ON1_ON2:
++ case ID_LED_ON1_OFF2:
++ mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
++ mac->ledctl_mode1 |= ledctl_on << (i << 3);
++ break;
++ case ID_LED_OFF1_DEF2:
++ case ID_LED_OFF1_ON2:
++ case ID_LED_OFF1_OFF2:
++ mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
++ mac->ledctl_mode1 |= ledctl_off << (i << 3);
++ break;
++ default:
++ /* Do nothing */
++ break;
++ }
++ switch (temp) {
++ case ID_LED_DEF1_ON2:
++ case ID_LED_ON1_ON2:
++ case ID_LED_OFF1_ON2:
++ mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
++ mac->ledctl_mode2 |= ledctl_on << (i << 3);
++ break;
++ case ID_LED_DEF1_OFF2:
++ case ID_LED_ON1_OFF2:
++ case ID_LED_OFF1_OFF2:
++ mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
++ mac->ledctl_mode2 |= ledctl_off << (i << 3);
++ break;
++ default:
++ /* Do nothing */
++ break;
++ }
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_cleanup_led_generic - Set LED config to default operation
++ * @hw: pointer to the HW structure
++ *
++ * Remove the current LED configuration and set the LED configuration
++ * to the default value, saved from the EEPROM.
++ **/
++s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
++{
++ ew32(LEDCTL, hw->mac.ledctl_default);
++
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_blink_led - Blink LED
++ * @hw: pointer to the HW structure
++ *
++ * Blink the led's which are set to be on.
++ **/
++s32 e1000_blink_led(struct e1000_hw *hw)
++{
++ u32 ledctl_blink = 0;
++ u32 i;
++
++ if (hw->media_type == e1000_media_type_fiber) {
++ /* always blink LED0 for PCI-E fiber */
++ ledctl_blink = E1000_LEDCTL_LED0_BLINK |
++ (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
++ } else {
++ /* set the blink bit for each LED that's "on" (0x0E)
++ * in ledctl_mode2 */
++ ledctl_blink = hw->mac.ledctl_mode2;
++ for (i = 0; i < 4; i++)
++ if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
++ E1000_LEDCTL_MODE_LED_ON)
++ ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
++ (i * 8));
++ }
++
++ ew32(LEDCTL, ledctl_blink);
++
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_led_on_generic - Turn LED on
++ * @hw: pointer to the HW structure
++ *
++ * Turn LED on.
++ **/
++s32 e1000_led_on_generic(struct e1000_hw *hw)
++{
++ u32 ctrl;
++
++ switch (hw->media_type) {
++ case e1000_media_type_fiber:
++ ctrl = er32(CTRL);
++ ctrl &= ~E1000_CTRL_SWDPIN0;
++ ctrl |= E1000_CTRL_SWDPIO0;
++ ew32(CTRL, ctrl);
++ break;
++ case e1000_media_type_copper:
++ ew32(LEDCTL, hw->mac.ledctl_mode2);
++ break;
++ default:
++ break;
++ }
++
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_led_off_generic - Turn LED off
++ * @hw: pointer to the HW structure
++ *
++ * Turn LED off.
++ **/
++s32 e1000_led_off_generic(struct e1000_hw *hw)
++{
++ u32 ctrl;
++
++ switch (hw->media_type) {
++ case e1000_media_type_fiber:
++ ctrl = er32(CTRL);
++ ctrl |= E1000_CTRL_SWDPIN0;
++ ctrl |= E1000_CTRL_SWDPIO0;
++ ew32(CTRL, ctrl);
++ break;
++ case e1000_media_type_copper:
++ ew32(LEDCTL, hw->mac.ledctl_mode1);
++ break;
++ default:
++ break;
++ }
++
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_set_pcie_no_snoop - Set PCI-express capabilities
++ * @hw: pointer to the HW structure
++ * @no_snoop: bitmap of snoop events
++ *
++ * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
++ **/
++void e1000_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
++{
++ u32 gcr;
++
++ if (no_snoop) {
++ gcr = er32(GCR);
++ gcr &= ~(PCIE_NO_SNOOP_ALL);
++ gcr |= no_snoop;
++ ew32(GCR, gcr);
++ }
++}
++
++/**
++ * e1000_disable_pcie_master - Disables PCI-express master access
++ * @hw: pointer to the HW structure
++ *
++ * Returns 0 (E1000_SUCCESS) if successful, else returns -10
++ * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
++ * the master requests to be disabled.
++ *
++ * Disables PCI-Express master access and verifies there are no pending
++ * requests.
++ **/
++s32 e1000_disable_pcie_master(struct e1000_hw *hw)
++{
++ u32 ctrl;
++ s32 timeout = MASTER_DISABLE_TIMEOUT;
++ s32 ret_val = E1000_SUCCESS;
++
++ ctrl = er32(CTRL);
++ ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
++ ew32(CTRL, ctrl);
++
++ while (timeout) {
++ if (!(er32(STATUS) &
++ E1000_STATUS_GIO_MASTER_ENABLE))
++ break;
++ udelay(100);
++ timeout--;
++ }
++
++ if (!timeout) {
++ hw_dbg(hw, "Master requests are pending.\n");
++ ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_reset_adaptive - Reset Adaptive Interframe Spacing
++ * @hw: pointer to the HW structure
++ *
++ * Reset the Adaptive Interframe Spacing throttle to default values.
++ **/
++void e1000_reset_adaptive(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++
++ mac->current_ifs_val = 0;
++ mac->ifs_min_val = IFS_MIN;
++ mac->ifs_max_val = IFS_MAX;
++ mac->ifs_step_size = IFS_STEP;
++ mac->ifs_ratio = IFS_RATIO;
++
++ mac->in_ifs_mode = 0;
++ ew32(AIT, 0);
++}
++
++/**
++ * e1000_update_adaptive - Update Adaptive Interframe Spacing
++ * @hw: pointer to the HW structure
++ *
++ * Update the Adaptive Interframe Spacing Throttle value based on the
++ * time between transmitted packets and time between collisions.
++ **/
++void e1000_update_adaptive(struct e1000_hw *hw)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++
++ if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
++ if (mac->tx_packet_delta > MIN_NUM_XMITS) {
++ mac->in_ifs_mode = 1;
++ if (mac->current_ifs_val < mac->ifs_max_val) {
++ if (!mac->current_ifs_val)
++ mac->current_ifs_val = mac->ifs_min_val;
++ else
++ mac->current_ifs_val +=
++ mac->ifs_step_size;
++ ew32(AIT,
++ mac->current_ifs_val);
++ }
++ }
++ } else {
++ if (mac->in_ifs_mode &&
++ (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
++ mac->current_ifs_val = 0;
++ mac->in_ifs_mode = 0;
++ ew32(AIT, 0);
++ }
++ }
++}
++
++/**
++ * e1000_raise_eec_clk - Raise EEPROM clock
++ * @hw: pointer to the HW structure
++ * @eecd: pointer to the EEPROM
++ *
++ * Enable/Raise the EEPROM clock bit.
++ **/
++static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
++{
++ *eecd = *eecd | E1000_EECD_SK;
++ ew32(EECD, *eecd);
++ e1e_flush();
++ udelay(hw->nvm.delay_usec);
++}
++
++/**
++ * e1000_lower_eec_clk - Lower EEPROM clock
++ * @hw: pointer to the HW structure
++ * @eecd: pointer to the EEPROM
++ *
++ * Clear/Lower the EEPROM clock bit.
++ **/
++static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
++{
++ *eecd = *eecd & ~E1000_EECD_SK;
++ ew32(EECD, *eecd);
++ e1e_flush();
++ udelay(hw->nvm.delay_usec);
++}
++
++/**
++ * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
++ * @hw: pointer to the HW structure
++ * @data: data to send to the EEPROM
++ * @count: number of bits to shift out
++ *
++ * We need to shift 'count' bits out to the EEPROM. So, the value in the
++ * "data" parameter will be shifted out to the EEPROM one bit at a time.
++ * In order to do this, "data" must be broken down into bits.
++ **/
++static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ u32 eecd = er32(EECD);
++ u32 mask;
++
++ mask = 0x01 << (count - 1);
++ if (nvm->type == e1000_nvm_eeprom_spi)
++ eecd |= E1000_EECD_DO;
++
++ do {
++ eecd &= ~E1000_EECD_DI;
++
++ if (data & mask)
++ eecd |= E1000_EECD_DI;
++
++ ew32(EECD, eecd);
++ e1e_flush();
++
++ udelay(nvm->delay_usec);
++
++ e1000_raise_eec_clk(hw, &eecd);
++ e1000_lower_eec_clk(hw, &eecd);
++
++ mask >>= 1;
++ } while (mask);
++
++ eecd &= ~E1000_EECD_DI;
++ ew32(EECD, eecd);
++}
++
++/**
++ * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
++ * @hw: pointer to the HW structure
++ * @count: number of bits to shift in
++ *
++ * In order to read a register from the EEPROM, we need to shift 'count' bits
++ * in from the EEPROM. Bits are "shifted in" by raising the clock input to
++ * the EEPROM (setting the SK bit), and then reading the value of the data out
++ * "DO" bit. During this "shifting in" process the data in "DI" bit should
++ * always be clear.
++ **/
++static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
++{
++ u32 eecd;
++ u32 i;
++ u16 data;
++
++ eecd = er32(EECD);
++
++ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
++ data = 0;
++
++ for (i = 0; i < count; i++) {
++ data <<= 1;
++ e1000_raise_eec_clk(hw, &eecd);
++
++ eecd = er32(EECD);
++
++ eecd &= ~E1000_EECD_DI;
++ if (eecd & E1000_EECD_DO)
++ data |= 1;
++
++ e1000_lower_eec_clk(hw, &eecd);
++ }
++
++ return data;
++}
++
++/**
++ * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
++ * @hw: pointer to the HW structure
++ * @ee_reg: EEPROM flag for polling
++ *
++ * Polls the EEPROM status bit for either read or write completion based
++ * upon the value of 'ee_reg'.
++ **/
++s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
++{
++ u32 attempts = 100000;
++ u32 i, reg = 0;
++ s32 ret_val = -E1000_ERR_NVM;
++
++ for (i = 0; i < attempts; i++) {
++ if (ee_reg == E1000_NVM_POLL_READ)
++ reg = er32(EERD);
++ else
++ reg = er32(EEWR);
++
++ if (reg & E1000_NVM_RW_REG_DONE) {
++ ret_val = E1000_SUCCESS;
++ break;
++ }
++
++ udelay(5);
++ }
++
++ return ret_val;
++}
++
++/**
++ * e1000_acquire_nvm - Generic request for access to EEPROM
++ * @hw: pointer to the HW structure
++ *
++ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
++ * Return successful if access grant bit set, else clear the request for
++ * EEPROM access and return -E1000_ERR_NVM (-1).
++ **/
++s32 e1000_acquire_nvm(struct e1000_hw *hw)
++{
++ u32 eecd = er32(EECD);
++ s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
++ s32 ret_val = E1000_SUCCESS;
++
++ ew32(EECD, eecd | E1000_EECD_REQ);
++ eecd = er32(EECD);
++
++ while (timeout) {
++ if (eecd & E1000_EECD_GNT)
++ break;
++ udelay(5);
++ eecd = er32(EECD);
++ timeout--;
++ }
++
++ if (!timeout) {
++ eecd &= ~E1000_EECD_REQ;
++ ew32(EECD, eecd);
++ hw_dbg(hw, "Could not acquire NVM grant\n");
++ ret_val = -E1000_ERR_NVM;
++ }
++
++ return ret_val;
++}
++
++/**
++ * e1000_standby_nvm - Return EEPROM to standby state
++ * @hw: pointer to the HW structure
++ *
++ * Return the EEPROM to a standby state.
++ **/
++static void e1000_standby_nvm(struct e1000_hw *hw)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ u32 eecd = er32(EECD);
++
++ if (nvm->type == e1000_nvm_eeprom_spi) {
++ /* Toggle CS to flush commands */
++ eecd |= E1000_EECD_CS;
++ ew32(EECD, eecd);
++ e1e_flush();
++ udelay(nvm->delay_usec);
++ eecd &= ~E1000_EECD_CS;
++ ew32(EECD, eecd);
++ e1e_flush();
++ udelay(nvm->delay_usec);
++ }
++}
++
++/**
++ * e1000_stop_nvm - Terminate EEPROM command
++ * @hw: pointer to the HW structure
++ *
++ * Terminates the current command by inverting the EEPROM's chip select pin.
++ **/
++static void e1000_stop_nvm(struct e1000_hw *hw)
++{
++ u32 eecd;
++
++ eecd = er32(EECD);
++ if (hw->nvm.type == e1000_nvm_eeprom_spi) {
++ /* Pull CS high */
++ eecd |= E1000_EECD_CS;
++ e1000_lower_eec_clk(hw, &eecd);
++ }
++}
++
++/**
++ * e1000_release_nvm - Release exclusive access to EEPROM
++ * @hw: pointer to the HW structure
++ *
++ * Stop any current commands to the EEPROM and clear the EEPROM request bit.
++ **/
++void e1000_release_nvm(struct e1000_hw *hw)
++{
++ u32 eecd;
++
++ e1000_stop_nvm(hw);
++
++ eecd = er32(EECD);
++ eecd &= ~E1000_EECD_REQ;
++ ew32(EECD, eecd);
++}
++
++/**
++ * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
++ * @hw: pointer to the HW structure
++ *
++ * Setups the EEPROM for reading and writing.
++ **/
++static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ u32 eecd = er32(EECD);
++ s32 ret_val = E1000_SUCCESS;
++ u16 timeout = 0;
++ u8 spi_stat_reg;
++
++ if (nvm->type == e1000_nvm_eeprom_spi) {
++ /* Clear SK and CS */
++ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
++ ew32(EECD, eecd);
++ udelay(1);
++ timeout = NVM_MAX_RETRY_SPI;
++
++ /* Read "Status Register" repeatedly until the LSB is cleared.
++ * The EEPROM will signal that the command has been completed
++ * by clearing bit 0 of the internal status register. If it's
++ * not cleared within 'timeout', then error out. */
++ while (timeout) {
++ e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
++ hw->nvm.opcode_bits);
++ spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
++ if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
++ break;
++
++ udelay(5);
++ e1000_standby_nvm(hw);
++ timeout--;
++ }
++
++ if (!timeout) {
++ hw_dbg(hw, "SPI NVM Status error\n");
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_read_nvm_spi - Read EEPROM's using SPI
++ * @hw: pointer to the HW structure
++ * @offset: offset of word in the EEPROM to read
++ * @words: number of words to read
++ * @data: word read from the EEPROM
++ *
++ * Reads a 16 bit word from the EEPROM.
++ **/
++s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ u32 i = 0;
++ s32 ret_val;
++ u16 word_in;
++ u8 read_opcode = NVM_READ_OPCODE_SPI;
++
++ /* A check for invalid values: offset too large, too many words,
++ * and not enough words. */
++ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
++ (words == 0)) {
++ hw_dbg(hw, "nvm parameter(s) out of bounds\n");
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++ ret_val = nvm->ops.acquire_nvm(hw);
++ if (ret_val)
++ goto out;
++
++ ret_val = e1000_ready_nvm_eeprom(hw);
++ if (ret_val)
++ goto release;
++
++ e1000_standby_nvm(hw);
++
++ if ((nvm->address_bits == 8) && (offset >= 128))
++ read_opcode |= NVM_A8_OPCODE_SPI;
++
++ /* Send the READ command (opcode + addr) */
++ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
++ e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
++
++ /* Read the data. SPI NVMs increment the address with each byte
++ * read and will roll over if reading beyond the end. This allows
++ * us to read the whole NVM from any offset */
++ for (i = 0; i < words; i++) {
++ word_in = e1000_shift_in_eec_bits(hw, 16);
++ data[i] = (word_in >> 8) | (word_in << 8);
++ }
++
++release:
++ nvm->ops.release_nvm(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_read_nvm_eerd - Reads EEPROM using EERD register
++ * @hw: pointer to the HW structure
++ * @offset: offset of word in the EEPROM to read
++ * @words: number of words to read
++ * @data: word read from the EEPROM
++ *
++ * Reads a 16 bit word from the EEPROM using the EERD register.
++ **/
++s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ u32 i, eerd = 0;
++ s32 ret_val = E1000_SUCCESS;
++
++ /* A check for invalid values: offset too large, too many words,
++ * and not enough words. */
++ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
++ (words == 0)) {
++ hw_dbg(hw, "nvm parameter(s) out of bounds\n");
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++ for (i = 0; i < words; i++) {
++ eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
++ E1000_NVM_RW_REG_START;
++
++ ew32(EERD, eerd);
++ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
++ if (ret_val)
++ break;
++
++ data[i] = (er32(EERD) >>
++ E1000_NVM_RW_REG_DATA);
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_write_nvm_spi - Write to EEPROM using SPI
++ * @hw: pointer to the HW structure
++ * @offset: offset within the EEPROM to be written to
++ * @words: number of words to write
++ * @data: 16 bit word(s) to be written to the EEPROM
++ *
++ * Writes data to EEPROM at offset using SPI interface.
++ *
++ * If e1000_update_nvm_checksum is not called after this function , the
++ * EEPROM will most likley contain an invalid checksum.
++ **/
++s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
++{
++ struct e1000_nvm_info *nvm = &hw->nvm;
++ s32 ret_val;
++ u16 widx = 0;
++
++ /* A check for invalid values: offset too large, too many words,
++ * and not enough words. */
++ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
++ (words == 0)) {
++ hw_dbg(hw, "nvm parameter(s) out of bounds\n");
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++ ret_val = nvm->ops.acquire_nvm(hw);
++ if (ret_val)
++ goto out;
++
++ msleep(10);
++
++ while (widx < words) {
++ u8 write_opcode = NVM_WRITE_OPCODE_SPI;
++
++ ret_val = e1000_ready_nvm_eeprom(hw);
++ if (ret_val)
++ goto release;
++
++ e1000_standby_nvm(hw);
++
++ /* Send the WRITE ENABLE command (8 bit opcode) */
++ e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
++ nvm->opcode_bits);
++
++ e1000_standby_nvm(hw);
++
++ /* Some SPI eeproms use the 8th address bit embedded in the
++ * opcode */
++ if ((nvm->address_bits == 8) && (offset >= 128))
++ write_opcode |= NVM_A8_OPCODE_SPI;
++
++ /* Send the Write command (8-bit opcode + addr) */
++ e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
++ e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
++ nvm->address_bits);
++
++ /* Loop to allow for up to whole page write of eeprom */
++ while (widx < words) {
++ u16 word_out = data[widx];
++ word_out = (word_out >> 8) | (word_out << 8);
++ e1000_shift_out_eec_bits(hw, word_out, 16);
++ widx++;
++
++ if ((((offset + widx) * 2) % nvm->page_size) == 0) {
++ e1000_standby_nvm(hw);
++ break;
++ }
++ }
++ }
++
++ msleep(10);
++release:
++ nvm->ops.release_nvm(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_read_mac_addr - Read device MAC address
++ * @hw: pointer to the HW structure
++ *
++ * Reads the device MAC address from the EEPROM and stores the value.
++ * Since devices with two ports use the same EEPROM, we increment the
++ * last bit in the MAC address for the second port.
++ **/
++s32 e1000_read_mac_addr(struct e1000_hw *hw)
++{
++ s32 ret_val = E1000_SUCCESS;
++ u16 offset, nvm_data, i;
++
++ for (i = 0; i < ETH_ALEN; i += 2) {
++ offset = i >> 1;
++ ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
++ if (ret_val) {
++ hw_dbg(hw, "NVM Read Error\n");
++ goto out;
++ }
++ hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
++ hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
++ }
++
++ /* Flip last bit of mac address if we're on second port */
++ if (hw->bus.func == E1000_FUNC_1)
++ hw->mac.perm_addr[5] ^= 1;
++
++ for (i = 0; i < ETH_ALEN; i++)
++ hw->mac.addr[i] = hw->mac.perm_addr[i];
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
++ * @hw: pointer to the HW structure
++ *
++ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
++ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
++ **/
++s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
++{
++ s32 ret_val = E1000_SUCCESS;
++ u16 checksum = 0;
++ u16 i, nvm_data;
++
++ for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
++ ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
++ if (ret_val) {
++ hw_dbg(hw, "NVM Read Error\n");
++ goto out;
++ }
++ checksum += nvm_data;
++ }
++
++ if (checksum != (u16) NVM_SUM) {
++ hw_dbg(hw, "NVM Checksum Invalid\n");
++ ret_val = -E1000_ERR_NVM;
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_update_nvm_checksum_generic - Update EEPROM checksum
++ * @hw: pointer to the HW structure
++ *
++ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
++ * up to the checksum. Then calculates the EEPROM checksum and writes the
++ * value to the EEPROM.
++ **/
++s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
++{
++ s32 ret_val;
++ u16 checksum = 0;
++ u16 i, nvm_data;
++
++ for (i = 0; i < NVM_CHECKSUM_REG; i++) {
++ ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
++ if (ret_val) {
++ hw_dbg(hw, "NVM Read Error while updating checksum.\n");
++ goto out;
++ }
++ checksum += nvm_data;
++ }
++ checksum = (u16) NVM_SUM - checksum;
++ ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
++ if (ret_val) {
++ hw_dbg(hw, "NVM Write Error while updating checksum.\n");
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_reload_nvm - Reloads EEPROM
++ * @hw: pointer to the HW structure
++ *
++ * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
++ * extended control register.
++ **/
++void e1000_reload_nvm(struct e1000_hw *hw)
++{
++ u32 ctrl_ext;
++
++ udelay(10);
++ ctrl_ext = er32(CTRL_EXT);
++ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
++ ew32(CTRL_EXT, ctrl_ext);
++ e1e_flush();
++}
++
++/**
++ * e1000_calculate_checksum - Calculate checksum for buffer
++ * @buffer: pointer to EEPROM
++ * @length: size of EEPROM to calculate a checksum for
++ *
++ * Calculates the checksum for some buffer on a specified length. The
++ * checksum calculated is returned.
++ **/
++static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
++{
++ u32 i;
++ u8 sum = 0;
++
++ if (!buffer)
++ return 0;
++
++ for (i = 0; i < length; i++)
++ sum += buffer[i];
++
++ return (u8) (0 - sum);
++}
++
++/**
++ * e1000_mng_enable_host_if - Checks host interface is enabled
++ * @hw: pointer to the HW structure
++ *
++ * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
++ *
++ * This function checks whether the HOST IF is enabled for command operaton
++ * and also checks whether the previous command is completed. It busy waits
++ * in case of previous command is not completed.
++ **/
++static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
++{
++ u32 hicr;
++ s32 ret_val = E1000_SUCCESS;
++ u8 i;
++
++ /* Check that the host interface is enabled. */
++ hicr = er32(HICR);
++ if ((hicr & E1000_HICR_EN) == 0) {
++ hw_dbg(hw, "E1000_HOST_EN bit disabled.\n");
++ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
++ goto out;
++ }
++ /* check the previous command is completed */
++ for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
++ hicr = er32(HICR);
++ if (!(hicr & E1000_HICR_C))
++ break;
++ mdelay(1);
++ }
++
++ if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
++ hw_dbg(hw, "Previous command timeout failed .\n");
++ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_check_mng_mode - check managament mode
++ * @hw: pointer to the HW structure
++ *
++ * Reads the firmware semaphore register and returns true (>0) if
++ * manageability is enabled, else false (0).
++ **/
++bool e1000_check_mng_mode(struct e1000_hw *hw)
++{
++ u32 fwsm = er32(FWSM);
++
++ return (fwsm & E1000_FWSM_MODE_MASK) == hw->mac.ops.mng_mode_enab;
++}
++
++/**
++ * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
++ * @hw: pointer to the HW structure
++ *
++ * Enables packet filtering on transmit packets if manageability is enabled
++ * and host interface is enabled.
++ **/
++bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
++{
++ struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
++ u32 *buffer = (u32 *)&hw->mng_cookie;
++ u32 offset;
++ s32 ret_val, hdr_csum, csum;
++ u8 i, len;
++ bool tx_filter = 1;
++
++ /* No manageability, no filtering */
++ if (!e1000_check_mng_mode(hw)) {
++ tx_filter = 0;
++ goto out;
++ }
++
++ /* If we can't read from the host interface for whatever
++ * reason, disable filtering.
++ */
++ ret_val = e1000_mng_enable_host_if(hw);
++ if (ret_val != E1000_SUCCESS) {
++ tx_filter = 0;
++ goto out;
++ }
++
++ /* Read in the header. Length and offset are in dwords. */
++ len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
++ offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
++ for (i = 0; i < len; i++)
++ *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
++ hdr_csum = hdr->checksum;
++ hdr->checksum = 0;
++ csum = e1000_calculate_checksum((u8 *)hdr,
++ E1000_MNG_DHCP_COOKIE_LENGTH);
++ /* If either the checksums or signature don't match, then
++ * the cookie area isn't considered valid, in which case we
++ * take the safe route of assuming Tx filtering is enabled.
++ */
++ if (hdr_csum != csum)
++ goto out;
++ if (hdr->signature != E1000_IAMT_SIGNATURE)
++ goto out;
++
++ /* Cookie area is valid, make the final check for filtering. */
++ if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING))
++ tx_filter = 0;
++
++out:
++ hw->mac.tx_pkt_filtering = tx_filter;
++ return tx_filter;
++}
++
++/**
++ * e1000_mng_write_cmd_header - Writes manageability command header
++ * @hw: pointer to the HW structure
++ * @hdr: pointer to the host interface command header
++ *
++ * Writes the command header after does the checksum calculation.
++ **/
++s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
++ struct e1000_host_mng_command_header *hdr)
++{
++ u16 i, length = sizeof(struct e1000_host_mng_command_header);
++
++ /* Write the whole command header structure with new checksum. */
++
++ hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
++
++ length >>= 2;
++ /* Write the relevant command block into the ram area. */
++ for (i = 0; i < length; i++) {
++ E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
++ *((u32 *) hdr + i));
++ e1e_flush();
++ }
++
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_mng_host_if_write - Writes to the manageability host interface
++ * @hw: pointer to the HW structure
++ * @buffer: pointer to the host interface buffer
++ * @length: size of the buffer
++ * @offset: location in the buffer to write to
++ * @sum: sum of the data (not checksum)
++ *
++ * This function writes the buffer content at the offset given on the host if.
++ * It also does alignment considerations to do the writes in most efficient
++ * way. Also fills up the sum of the buffer in *buffer parameter.
++ **/
++static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
++ u16 length, u16 offset, u8 *sum)
++{
++ u8 *tmp;
++ u8 *bufptr = buffer;
++ u32 data = 0;
++ s32 ret_val = E1000_SUCCESS;
++ u16 remaining, i, j, prev_bytes;
++
++ /* sum = only sum of the data and it is not checksum */
++
++ if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
++ ret_val = -E1000_ERR_PARAM;
++ goto out;
++ }
++
++ tmp = (u8 *)&data;
++ prev_bytes = offset & 0x3;
++ offset >>= 2;
++
++ if (prev_bytes) {
++ data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
++ for (j = prev_bytes; j < sizeof(u32); j++) {
++ *(tmp + j) = *bufptr++;
++ *sum += *(tmp + j);
++ }
++ E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
++ length -= j - prev_bytes;
++ offset++;
++ }
++
++ remaining = length & 0x3;
++ length -= remaining;
++
++ /* Calculate length in DWORDs */
++ length >>= 2;
++
++ /* The device driver writes the relevant command block into the
++ * ram area. */
++ for (i = 0; i < length; i++) {
++ for (j = 0; j < sizeof(u32); j++) {
++ *(tmp + j) = *bufptr++;
++ *sum += *(tmp + j);
++ }
++
++ E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
++ }
++ if (remaining) {
++ for (j = 0; j < sizeof(u32); j++) {
++ if (j < remaining)
++ *(tmp + j) = *bufptr++;
++ else
++ *(tmp + j) = 0;
++
++ *sum += *(tmp + j);
++ }
++ E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
++ * @hw: pointer to the HW structure
++ * @buffer: pointer to the host interface
++ * @length: size of the buffer
++ *
++ * Writes the DHCP information to the host interface.
++ **/
++s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
++{
++ struct e1000_host_mng_command_header hdr;
++ s32 ret_val;
++ u32 hicr;
++
++ hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
++ hdr.command_length = length;
++ hdr.reserved1 = 0;
++ hdr.reserved2 = 0;
++ hdr.checksum = 0;
++
++ /* Enable the host interface */
++ ret_val = e1000_mng_enable_host_if(hw);
++ if (ret_val)
++ goto out;
++
++ /* Populate the host interface with the contents of "buffer". */
++ ret_val = e1000_mng_host_if_write(hw, buffer, length,
++ sizeof(hdr), &(hdr.checksum));
++ if (ret_val)
++ goto out;
++
++ /* Write the manageability command header */
++ ret_val = e1000_mng_write_cmd_header(hw, &hdr);
++ if (ret_val)
++ goto out;
++
++ /* Tell the ARC a new command is pending. */
++ hicr = er32(HICR);
++ ew32(HICR, hicr | E1000_HICR_C);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_enable_mng_pass_thru - Enable processing of ARP's
++ * @hw: pointer to the HW structure
++ *
++ * Verifies the hardware needs to allow ARPs to be processed by the host.
++ **/
++bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
++{
++ u32 manc;
++ u32 fwsm, factps;
++ bool ret_val = 0;
++
++ manc = er32(MANC);
++
++ if (!(manc & E1000_MANC_RCV_TCO_EN) ||
++ !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
++ goto out;
++
++ if (hw->mac.arc_subsystem_valid) {
++ fwsm = er32(FWSM);
++ factps = er32(FACTPS);
++
++ if (!(factps & E1000_FACTPS_MNGCG) &&
++ ((fwsm & E1000_FWSM_MODE_MASK) ==
++ (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
++ ret_val = 1;
++ goto out;
++ }
++ } else {
++ if ((manc & E1000_MANC_SMBUS_EN) &&
++ !(manc & E1000_MANC_ASF_EN)) {
++ ret_val = 1;
++ goto out;
++ }
++ }
++
++out:
++ return ret_val;
++}
++
+diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c
+new file mode 100644
+index 0000000..2d0e78c
+--- /dev/null
++++ b/drivers/net/e1000e/netdev.c
+@@ -0,0 +1,4413 @@
++/*******************************************************************************
++
++ Intel PRO/1000 Linux driver
++ Copyright(c) 1999 - 2007 Intel Corporation.
++
++ This program is free software; you can redistribute it and/or modify it
++ under the terms and conditions of the GNU General Public License,
++ version 2, as published by the Free Software Foundation.
++
++ This program is distributed in the hope it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
++ more details.
++
++ You should have received a copy of the GNU General Public License along with
++ this program; if not, write to the Free Software Foundation, Inc.,
++ 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++ The full GNU General Public License is included in this distribution in
++ the file called "COPYING".
++
++ Contact Information:
++ Linux NICS <linux.nics@intel.com>
++ e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
++ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++#include <linux/module.h>
++#include <linux/types.h>
++#include <linux/init.h>
++#include <linux/vmalloc.h>
++#include <linux/pagemap.h>
++#include <linux/netdevice.h>
++#include <linux/tcp.h>
++#include <linux/ipv6.h>
++#include <net/checksum.h>
++#include <net/ip6_checksum.h>
++#include <linux/mii.h>
++#include <linux/ethtool.h>
++#include <linux/if_vlan.h>
++#include <linux/cpu.h>
++#include <linux/smp.h>
++
++#include "e1000.h"
++
++#define DRV_VERSION "0.2.0"
++char e1000_driver_name[] = "e1000e";
++const char e1000_driver_version[] = DRV_VERSION;
++
++const struct e1000_info * e1000_info_tbl[] = {
++ [board_82571] = &e1000_82571_info,
++ [board_82572] = &e1000_82572_info,
++ [board_82573] = &e1000_82573_info,
++ [board_80003es2lan] = &e1000_es2_info,
++ [board_ich8lan] = &e1000_ich8_info,
++ [board_ich9lan] = &e1000_ich9_info,
++};
++
++#ifdef DEBUG
++/**
++ * e1000_get_hw_dev_name - return device name string
++ * used by hardware layer to print debugging information
++ **/
++char *e1000_get_hw_dev_name(struct e1000_hw *hw)
++{
++ struct e1000_adapter *adapter = hw->back;
++ struct net_device *netdev = adapter->netdev;
++ return netdev->name;
++}
++#endif
++
++/**
++ * e1000_desc_unused - calculate if we have unused descriptors
++ **/
++static int e1000_desc_unused(struct e1000_ring *ring)
++{
++ if (ring->next_to_clean > ring->next_to_use)
++ return ring->next_to_clean - ring->next_to_use - 1;
++
++ return ring->count + ring->next_to_clean - ring->next_to_use - 1;
++}
++
++/**
++ * e1000_receive_skb - helper function to handle rx indications
++ * @adapter: board private structure
++ * @status: descriptor status field as written by hardware
++ * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
++ * @skb: pointer to sk_buff to be indicated to stack
++ **/
++static void e1000_receive_skb(struct e1000_adapter *adapter,
++ struct net_device *netdev,
++ struct sk_buff *skb,
++ u8 status, u16 vlan)
++{
++ skb->protocol = eth_type_trans(skb, netdev);
++
++ if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
++ vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
++ le16_to_cpu(vlan) &
++ E1000_RXD_SPC_VLAN_MASK);
++ else
++ netif_receive_skb(skb);
++
++ netdev->last_rx = jiffies;
++}
++
++/**
++ * e1000_rx_checksum - Receive Checksum Offload for 82543
++ * @adapter: board private structure
++ * @status_err: receive descriptor status and error fields
++ * @csum: receive descriptor csum field
++ * @sk_buff: socket buffer with received data
++ **/
++static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
++ u32 csum, struct sk_buff *skb)
++{
++ u16 status = (u16)status_err;
++ u8 errors = (u8)(status_err >> 24);
++ skb->ip_summed = CHECKSUM_NONE;
++
++ /* Ignore Checksum bit is set */
++ if (status & E1000_RXD_STAT_IXSM)
++ return;
++ /* TCP/UDP checksum error bit is set */
++ if (errors & E1000_RXD_ERR_TCPE) {
++ /* let the stack verify checksum errors */
++ adapter->hw_csum_err++;
++ return;
++ }
++
++ /* TCP/UDP Checksum has not been calculated */
++ if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
++ return;
++
++ /* It must be a TCP or UDP packet with a valid checksum */
++ if (status & E1000_RXD_STAT_TCPCS) {
++ /* TCP checksum is good */
++ skb->ip_summed = CHECKSUM_UNNECESSARY;
++ } else {
++ /* IP fragment with UDP payload */
++ /* Hardware complements the payload checksum, so we undo it
++ * and then put the value in host order for further stack use.
++ */
++ csum = ntohl(csum ^ 0xFFFF);
++ skb->csum = csum;
++ skb->ip_summed = CHECKSUM_COMPLETE;
++ }
++ adapter->hw_csum_good++;
++}
++
++/**
++ * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
++ * @adapter: address of board private structure
++ **/
++static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
++ int cleaned_count)
++{
++ struct net_device *netdev = adapter->netdev;
++ struct pci_dev *pdev = adapter->pdev;
++ struct e1000_ring *rx_ring = adapter->rx_ring;
++ struct e1000_rx_desc *rx_desc;
++ struct e1000_buffer *buffer_info;
++ struct sk_buff *skb;
++ unsigned int i;
++ unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
++
++ i = rx_ring->next_to_use;
++ buffer_info = &rx_ring->buffer_info[i];
++
++ while (cleaned_count--) {
++ skb = buffer_info->skb;
++ if (skb) {
++ skb_trim(skb, 0);
++ goto map_skb;
++ }
++
++ skb = netdev_alloc_skb(netdev, bufsz);
++ if (!skb) {
++ /* Better luck next round */
++ adapter->alloc_rx_buff_failed++;
++ break;
++ }
++
++ /* Make buffer alignment 2 beyond a 16 byte boundary
++ * this will result in a 16 byte aligned IP header after
++ * the 14 byte MAC header is removed
++ */
++ skb_reserve(skb, NET_IP_ALIGN);
++
++ buffer_info->skb = skb;
++map_skb:
++ buffer_info->dma = pci_map_single(pdev, skb->data,
++ adapter->rx_buffer_len,
++ PCI_DMA_FROMDEVICE);
++
++ rx_desc = E1000_RX_DESC(*rx_ring, i);
++ rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
++
++ i++;
++ if (i == rx_ring->count)
++ i = 0;
++ buffer_info = &rx_ring->buffer_info[i];
++ }
++
++ if (rx_ring->next_to_use != i) {
++ rx_ring->next_to_use = i;
++ if (i-- == 0)
++ i = (rx_ring->count - 1);
++
++ /* Force memory writes to complete before letting h/w
++ * know there are new descriptors to fetch. (Only
++ * applicable for weak-ordered memory model archs,
++ * such as IA-64). */
++ wmb();
++ writel(i, adapter->hw.hw_addr + rx_ring->tail);
++ }
++}
++
++/**
++ * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
++ * @adapter: address of board private structure
++ **/
++static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
++ int cleaned_count)
++{
++ struct net_device *netdev = adapter->netdev;
++ struct pci_dev *pdev = adapter->pdev;
++ union e1000_rx_desc_packet_split *rx_desc;
++ struct e1000_ring *rx_ring = adapter->rx_ring;
++ struct e1000_buffer *buffer_info;
++ struct e1000_ps_page *ps_page;
++ struct sk_buff *skb;
++ unsigned int i, j;
++
++ i = rx_ring->next_to_use;
++ buffer_info = &rx_ring->buffer_info[i];
++
++ while (cleaned_count--) {
++ rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
++
++ for (j = 0; j < PS_PAGE_BUFFERS; j++) {
++ ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS)
++ + j];
++ if (j < adapter->rx_ps_pages) {
++ if (!ps_page->page) {
++ ps_page->page = alloc_page(GFP_ATOMIC);
++ if (!ps_page->page) {
++ adapter->alloc_rx_buff_failed++;
++ goto no_buffers;
++ }
++ ps_page->dma = pci_map_page(pdev,
++ ps_page->page,
++ 0, PAGE_SIZE,
++ PCI_DMA_FROMDEVICE);
++ }
++ /*
++ * Refresh the desc even if buffer_addrs
++ * didn't change because each write-back
++ * erases this info.
++ */
++ rx_desc->read.buffer_addr[j+1] =
++ cpu_to_le64(ps_page->dma);
++ } else {
++ rx_desc->read.buffer_addr[j+1] = ~0;
++ }
++ }
++
++ skb = netdev_alloc_skb(netdev,
++ adapter->rx_ps_bsize0 + NET_IP_ALIGN);
++
++ if (!skb) {
++ adapter->alloc_rx_buff_failed++;
++ break;
++ }
++
++ /* Make buffer alignment 2 beyond a 16 byte boundary
++ * this will result in a 16 byte aligned IP header after
++ * the 14 byte MAC header is removed
++ */
++ skb_reserve(skb, NET_IP_ALIGN);
++
++ buffer_info->skb = skb;
++ buffer_info->dma = pci_map_single(pdev, skb->data,
++ adapter->rx_ps_bsize0,
++ PCI_DMA_FROMDEVICE);
++
++ rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
++
++ i++;
++ if (i == rx_ring->count)
++ i = 0;
++ buffer_info = &rx_ring->buffer_info[i];
++ }
++
++no_buffers:
++ if (rx_ring->next_to_use != i) {
++ rx_ring->next_to_use = i;
++
++ if (!(i--))
++ i = (rx_ring->count - 1);
++
++ /* Force memory writes to complete before letting h/w
++ * know there are new descriptors to fetch. (Only
++ * applicable for weak-ordered memory model archs,
++ * such as IA-64). */
++ wmb();
++ /* Hardware increments by 16 bytes, but packet split
++ * descriptors are 32 bytes...so we increment tail
++ * twice as much.
++ */
++ writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
++ }
++}
++
++/**
++ * e1000_alloc_rx_buffers_jumbo - Replace used jumbo receive buffers
++ *
++ * @adapter: address of board private structure
++ * @cleaned_count: number of buffers to allocate this pass
++ **/
++static void e1000_alloc_rx_buffers_jumbo(struct e1000_adapter *adapter,
++ int cleaned_count)
++{
++ struct net_device *netdev = adapter->netdev;
++ struct pci_dev *pdev = adapter->pdev;
++ struct e1000_ring *rx_ring = adapter->rx_ring;
++ struct e1000_rx_desc *rx_desc;
++ struct e1000_buffer *buffer_info;
++ struct sk_buff *skb;
++ unsigned int i;
++ unsigned int bufsz = 256 -
++ 16 /*for skb_reserve */ -
++ NET_IP_ALIGN;
++
++ i = rx_ring->next_to_use;
++ buffer_info = &rx_ring->buffer_info[i];
++
++ while (cleaned_count--) {
++ skb = buffer_info->skb;
++ if (skb) {
++ skb_trim(skb, 0);
++ goto check_page;
++ }
++
++ skb = netdev_alloc_skb(netdev, bufsz);
++ if (!skb) {
++ /* Better luck next round */
++ adapter->alloc_rx_buff_failed++;
++ break;
++ }
++
++ /* Make buffer alignment 2 beyond a 16 byte boundary
++ * this will result in a 16 byte aligned IP header after
++ * the 14 byte MAC header is removed
++ */
++ skb_reserve(skb, NET_IP_ALIGN);
++
++ buffer_info->skb = skb;
++check_page:
++ /* allocate a new page if necessary */
++ if (!buffer_info->page) {
++ buffer_info->page = alloc_page(GFP_ATOMIC);
++ if (!buffer_info->page) {
++ adapter->alloc_rx_buff_failed++;
++ break;
++ }
++ }
++
++ if (!buffer_info->dma)
++ buffer_info->dma = pci_map_page(pdev,
++ buffer_info->page, 0,
++ PAGE_SIZE,
++ PCI_DMA_FROMDEVICE);
++
++ rx_desc = E1000_RX_DESC(*rx_ring, i);
++ rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
++
++ i++;
++ if (i == rx_ring->count)
++ i = 0;
++ buffer_info = &rx_ring->buffer_info[i];
++ }
++
++ if (rx_ring->next_to_use != i) {
++ rx_ring->next_to_use = i;
++ if (i-- == 0)
++ i = (rx_ring->count - 1);
++
++ /* Force memory writes to complete before letting h/w
++ * know there are new descriptors to fetch. (Only
++ * applicable for weak-ordered memory model archs,
++ * such as IA-64). */
++ wmb();
++ writel(i, adapter->hw.hw_addr + rx_ring->tail);
++ }
++}
++
++/**
++ * e1000_clean_rx_irq - Send received data up the network stack; legacy
++ * @adapter: board private structure
++ *
++ * the return value indicates whether actual cleaning was done, there
++ * is no guarantee that everything was cleaned
++ **/
++static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
++ int *work_done, int work_to_do)
++{
++ struct net_device *netdev = adapter->netdev;
++ struct pci_dev *pdev = adapter->pdev;
++ struct e1000_ring *rx_ring = adapter->rx_ring;
++ struct e1000_rx_desc *rx_desc, *next_rxd;
++ struct e1000_buffer *buffer_info, *next_buffer;
++ u32 length;
++ unsigned int i;
++ int cleaned_count = 0;
++ bool cleaned = 0;
++ unsigned int total_rx_bytes = 0, total_rx_packets = 0;
++
++ i = rx_ring->next_to_clean;
++ rx_desc = E1000_RX_DESC(*rx_ring, i);
++ buffer_info = &rx_ring->buffer_info[i];
++
++ while (rx_desc->status & E1000_RXD_STAT_DD) {
++ struct sk_buff *skb;
++ u8 status;
++
++ if (*work_done >= work_to_do)
++ break;
++ (*work_done)++;
++
++ status = rx_desc->status;
++ skb = buffer_info->skb;
++ buffer_info->skb = NULL;
++
++ prefetch(skb->data - NET_IP_ALIGN);
++
++ i++;
++ if (i == rx_ring->count)
++ i = 0;
++ next_rxd = E1000_RX_DESC(*rx_ring, i);
++ prefetch(next_rxd);
++
++ next_buffer = &rx_ring->buffer_info[i];
++
++ cleaned = 1;
++ cleaned_count++;
++ pci_unmap_single(pdev,
++ buffer_info->dma,
++ adapter->rx_buffer_len,
++ PCI_DMA_FROMDEVICE);
++ buffer_info->dma = 0;
++
++ length = le16_to_cpu(rx_desc->length);
++
++ /* !EOP means multiple descriptors were used to store a single
++ * packet, also make sure the frame isn't just CRC only */
++ if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
++ /* All receives must fit into a single buffer */
++ ndev_dbg(netdev, "%s: Receive packet consumed "
++ "multiple buffers\n", netdev->name);
++ /* recycle */
++ buffer_info->skb = skb;
++ goto next_desc;
++ }
++
++ if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
++ /* recycle */
++ buffer_info->skb = skb;
++ goto next_desc;
++ }
++
++ /* adjust length to remove Ethernet CRC */
++ length -= 4;
++
++ /* probably a little skewed due to removing CRC */
++ total_rx_bytes += length;
++ total_rx_packets++;
++
++ /* code added for copybreak, this should improve
++ * performance for small packets with large amounts
++ * of reassembly being done in the stack */
++ if (length < copybreak) {
++ struct sk_buff *new_skb =
++ netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
++ if (new_skb) {
++ skb_reserve(new_skb, NET_IP_ALIGN);
++ memcpy(new_skb->data - NET_IP_ALIGN,
++ skb->data - NET_IP_ALIGN,
++ length + NET_IP_ALIGN);
++ /* save the skb in buffer_info as good */
++ buffer_info->skb = skb;
++ skb = new_skb;
++ }
++ /* else just continue with the old one */
++ }
++ /* end copybreak code */
++ skb_put(skb, length);
++
++ /* Receive Checksum Offload */
++ e1000_rx_checksum(adapter,
++ (u32)(status) |
++ ((u32)(rx_desc->errors) << 24),
++ le16_to_cpu(rx_desc->csum), skb);
++
++ e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
++
++next_desc:
++ rx_desc->status = 0;
++
++ /* return some buffers to hardware, one at a time is too slow */
++ if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
++ adapter->alloc_rx_buf(adapter, cleaned_count);
++ cleaned_count = 0;
++ }
++
++ /* use prefetched values */
++ rx_desc = next_rxd;
++ buffer_info = next_buffer;
++ }
++ rx_ring->next_to_clean = i;
++
++ cleaned_count = e1000_desc_unused(rx_ring);
++ if (cleaned_count)
++ adapter->alloc_rx_buf(adapter, cleaned_count);
++
++ adapter->total_rx_packets += total_rx_packets;
++ adapter->total_rx_bytes += total_rx_bytes;
++ return cleaned;
++}
++
++static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
++ u16 length)
++{
++ bi->page = NULL;
++ skb->len += length;
++ skb->data_len += length;
++ skb->truesize += length;
++}
++
++static void e1000_put_txbuf(struct e1000_adapter *adapter,
++ struct e1000_buffer *buffer_info)
++{
++ if (buffer_info->dma) {
++ pci_unmap_page(adapter->pdev, buffer_info->dma,
++ buffer_info->length, PCI_DMA_TODEVICE);
++ buffer_info->dma = 0;
++ }
++ if (buffer_info->skb) {
++ dev_kfree_skb_any(buffer_info->skb);
++ buffer_info->skb = NULL;
++ }
++}
++
++static void e1000_print_tx_hang(struct e1000_adapter *adapter)
++{
++ struct e1000_ring *tx_ring = adapter->tx_ring;
++ unsigned int i = tx_ring->next_to_clean;
++ unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
++ struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
++ struct net_device *netdev = adapter->netdev;
++
++ /* detected Tx unit hang */
++ ndev_err(netdev,
++ "Detected Tx Unit Hang:\n"
++ " TDH <%x>\n"
++ " TDT <%x>\n"
++ " next_to_use <%x>\n"
++ " next_to_clean <%x>\n"
++ "buffer_info[next_to_clean]:\n"
++ " time_stamp <%lx>\n"
++ " next_to_watch <%x>\n"
++ " jiffies <%lx>\n"
++ " next_to_watch.status <%x>\n",
++ readl(adapter->hw.hw_addr + tx_ring->head),
++ readl(adapter->hw.hw_addr + tx_ring->tail),
++ tx_ring->next_to_use,
++ tx_ring->next_to_clean,
++ tx_ring->buffer_info[eop].time_stamp,
++ eop,
++ jiffies,
++ eop_desc->upper.fields.status);
++}
++
++/**
++ * e1000_clean_tx_irq - Reclaim resources after transmit completes
++ * @adapter: board private structure
++ *
++ * the return value indicates whether actual cleaning was done, there
++ * is no guarantee that everything was cleaned
++ **/
++static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
++{
++ struct net_device *netdev = adapter->netdev;
++ struct e1000_hw *hw = &adapter->hw;
++ struct e1000_ring *tx_ring = adapter->tx_ring;
++ struct e1000_tx_desc *tx_desc, *eop_desc;
++ struct e1000_buffer *buffer_info;
++ unsigned int i, eop;
++ unsigned int count = 0;
++ bool cleaned = 0;
++ unsigned int total_tx_bytes = 0, total_tx_packets = 0;
++
++ i = tx_ring->next_to_clean;
++ eop = tx_ring->buffer_info[i].next_to_watch;
++ eop_desc = E1000_TX_DESC(*tx_ring, eop);
++
++ while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
++ for (cleaned = 0; !cleaned; ) {
++ tx_desc = E1000_TX_DESC(*tx_ring, i);
++ buffer_info = &tx_ring->buffer_info[i];
++ cleaned = (i == eop);
++
++ if (cleaned) {
++ struct sk_buff *skb = buffer_info->skb;
++ unsigned int segs, bytecount;
++ segs = skb_shinfo(skb)->gso_segs ?: 1;
++ /* multiply data chunks by size of headers */
++ bytecount = ((segs - 1) * skb_headlen(skb)) +
++ skb->len;
++ total_tx_packets += segs;
++ total_tx_bytes += bytecount;
++ }
++
++ e1000_put_txbuf(adapter, buffer_info);
++ tx_desc->upper.data = 0;
++
++ i++;
++ if (i == tx_ring->count)
++ i = 0;
++ }
++
++ eop = tx_ring->buffer_info[i].next_to_watch;
++ eop_desc = E1000_TX_DESC(*tx_ring, eop);
++#define E1000_TX_WEIGHT 64
++ /* weight of a sort for tx, to avoid endless transmit cleanup */
++ if (count++ == E1000_TX_WEIGHT)
++ break;
++ }
++
++ tx_ring->next_to_clean = i;
++
++#define TX_WAKE_THRESHOLD 32
++ if (cleaned && netif_carrier_ok(netdev) &&
++ e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
++ /* Make sure that anybody stopping the queue after this
++ * sees the new next_to_clean.
++ */
++ smp_mb();
++
++ if (netif_queue_stopped(netdev) &&
++ !(test_bit(__E1000_DOWN, &adapter->state))) {
++ netif_wake_queue(netdev);
++ ++adapter->restart_queue;
++ }
++ }
++
++ if (adapter->detect_tx_hung) {
++ /* Detect a transmit hang in hardware, this serializes the
++ * check with the clearing of time_stamp and movement of i */
++ adapter->detect_tx_hung = 0;
++ if (tx_ring->buffer_info[eop].dma &&
++ time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
++ + (adapter->tx_timeout_factor * HZ))
++ && !(er32(STATUS) &
++ E1000_STATUS_TXOFF)) {
++ e1000_print_tx_hang(adapter);
++ netif_stop_queue(netdev);
++ }
++ }
++ adapter->total_tx_bytes += total_tx_bytes;
++ adapter->total_tx_packets += total_tx_packets;
++ return cleaned;
++}
++
++/**
++ * e1000_clean_rx_irq_jumbo - Send received data up the network stack; legacy
++ * @adapter: board private structure
++ *
++ * the return value indicates whether actual cleaning was done, there
++ * is no guarantee that everything was cleaned
++ **/
++static bool e1000_clean_rx_irq_jumbo(struct e1000_adapter *adapter,
++ int *work_done, int work_to_do)
++{
++ struct net_device *netdev = adapter->netdev;
++ struct pci_dev *pdev = adapter->pdev;
++ struct e1000_ring *rx_ring = adapter->rx_ring;
++ struct e1000_rx_desc *rx_desc, *next_rxd;
++ struct e1000_buffer *buffer_info, *next_buffer;
++ u32 length;
++ unsigned int i;
++ int cleaned_count = 0;
++ bool cleaned = 0;
++ unsigned int total_rx_bytes = 0, total_rx_packets = 0;
++
++ i = rx_ring->next_to_clean;
++ rx_desc = E1000_RX_DESC(*rx_ring, i);
++ buffer_info = &rx_ring->buffer_info[i];
++
++ while (rx_desc->status & E1000_RXD_STAT_DD) {
++ struct sk_buff *skb;
++ u8 status;
++
++ if (*work_done >= work_to_do)
++ break;
++ (*work_done)++;
++
++ status = rx_desc->status;
++ skb = buffer_info->skb;
++ buffer_info->skb = NULL;
++
++ i++;
++ if (i == rx_ring->count)
++ i = 0;
++ next_rxd = E1000_RX_DESC(*rx_ring, i);
++ prefetch(next_rxd);
++
++ next_buffer = &rx_ring->buffer_info[i];
++
++ cleaned = 1;
++ cleaned_count++;
++ pci_unmap_page(pdev,
++ buffer_info->dma,
++ PAGE_SIZE,
++ PCI_DMA_FROMDEVICE);
++ buffer_info->dma = 0;
++
++ length = le16_to_cpu(rx_desc->length);
++
++ /* errors is only valid for DD + EOP descriptors */
++ if ((status & E1000_RXD_STAT_EOP) &&
++ (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
++ /* recycle both page and skb */
++ buffer_info->skb = skb;
++ /* an error means any chain goes out the window too */
++ if (rx_ring->rx_skb_top)
++ dev_kfree_skb(rx_ring->rx_skb_top);
++ rx_ring->rx_skb_top = NULL;
++ goto next_desc;
++ }
++
++#define rxtop rx_ring->rx_skb_top
++ if (!(status & E1000_RXD_STAT_EOP)) {
++ /* this descriptor is only the beginning (or middle) */
++ if (!rxtop) {
++ /* this is the beginning of a chain */
++ rxtop = skb;
++ skb_fill_page_desc(rxtop, 0, buffer_info->page,
++ 0, length);
++ } else {
++ /* this is the middle of a chain */
++ skb_fill_page_desc(rxtop,
++ skb_shinfo(rxtop)->nr_frags,
++ buffer_info->page, 0,
++ length);
++ /* re-use the skb, only consumed the page */
++ buffer_info->skb = skb;
++ }
++ e1000_consume_page(buffer_info, rxtop, length);
++ goto next_desc;
++ } else {
++ if (rxtop) {
++ /* end of the chain */
++ skb_fill_page_desc(rxtop,
++ skb_shinfo(rxtop)->nr_frags,
++ buffer_info->page, 0, length);
++ /* re-use the current skb, we only consumed the
++ * page */
++ buffer_info->skb = skb;
++ skb = rxtop;
++ rxtop = NULL;
++ e1000_consume_page(buffer_info, skb, length);
++ } else {
++ /* no chain, got EOP, this buf is the packet
++ * copybreak to save the put_page/alloc_page */
++ if (length <= copybreak &&
++ skb_tailroom(skb) >= length) {
++ u8 *vaddr;
++ vaddr = kmap_atomic(buffer_info->page,
++ KM_SKB_DATA_SOFTIRQ);
++ memcpy(skb_tail_pointer(skb),
++ vaddr, length);
++ kunmap_atomic(vaddr,
++ KM_SKB_DATA_SOFTIRQ);
++ /* re-use the page, so don't erase
++ * buffer_info->page */
++ skb_put(skb, length);
++ } else {
++ skb_fill_page_desc(skb, 0,
++ buffer_info->page, 0,
++ length);
++ e1000_consume_page(buffer_info, skb,
++ length);
++ }
++ }
++ }
++
++ /* Receive Checksum Offload XXX recompute due to CRC strip? */
++ e1000_rx_checksum(adapter,
++ (u32)(status) |
++ ((u32)(rx_desc->errors) << 24),
++ le16_to_cpu(rx_desc->csum), skb);
++
++ pskb_trim(skb, skb->len - 4);
++
++ /* probably a little skewed due to removing CRC */
++ total_rx_bytes += skb->len;
++ total_rx_packets++;
++
++ /* eth type trans needs skb->data to point to something */
++ if (!pskb_may_pull(skb, ETH_HLEN)) {
++ ndev_err(netdev, "__pskb_pull_tail failed.\n");
++ dev_kfree_skb(skb);
++ goto next_desc;
++ }
++
++ e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
++
++next_desc:
++ rx_desc->status = 0;
++
++ /* return some buffers to hardware, one at a time is too slow */
++ if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
++ adapter->alloc_rx_buf(adapter, cleaned_count);
++ cleaned_count = 0;
++ }
++
++ /* use prefetched values */
++ rx_desc = next_rxd;
++ buffer_info = next_buffer;
++ }
++ rx_ring->next_to_clean = i;
++
++ cleaned_count = e1000_desc_unused(rx_ring);
++ if (cleaned_count)
++ adapter->alloc_rx_buf(adapter, cleaned_count);
++
++ adapter->total_rx_packets += total_rx_packets;
++ adapter->total_rx_bytes += total_rx_bytes;
++ return cleaned;
++}
++
++/**
++ * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
++ * @adapter: board private structure
++ *
++ * the return value indicates whether actual cleaning was done, there
++ * is no guarantee that everything was cleaned
++ **/
++static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
++ int *work_done, int work_to_do)
++{
++ union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
++ struct net_device *netdev = adapter->netdev;
++ struct pci_dev *pdev = adapter->pdev;
++ struct e1000_ring *rx_ring = adapter->rx_ring;
++ struct e1000_buffer *buffer_info, *next_buffer;
++ struct e1000_ps_page *ps_page;
++ struct sk_buff *skb;
++ unsigned int i, j;
++ u32 length, staterr;
++ int cleaned_count = 0;
++ bool cleaned = 0;
++ unsigned int total_rx_bytes = 0, total_rx_packets = 0;
++
++ i = rx_ring->next_to_clean;
++ rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
++ staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
++ buffer_info = &rx_ring->buffer_info[i];
++
++ while (staterr & E1000_RXD_STAT_DD) {
++ if (*work_done >= work_to_do)
++ break;
++ (*work_done)++;
++ skb = buffer_info->skb;
++
++ /* in the packet split case this is header only */
++ prefetch(skb->data - NET_IP_ALIGN);
++
++ i++;
++ if (i == rx_ring->count)
++ i = 0;
++ next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
++ prefetch(next_rxd);
++
++ next_buffer = &rx_ring->buffer_info[i];
++
++ cleaned = 1;
++ cleaned_count++;
++ pci_unmap_single(pdev, buffer_info->dma,
++ adapter->rx_ps_bsize0,
++ PCI_DMA_FROMDEVICE);
++ buffer_info->dma = 0;
++
++ if (!(staterr & E1000_RXD_STAT_EOP)) {
++ ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
++ "up the full packet\n", netdev->name);
++ dev_kfree_skb_irq(skb);
++ goto next_desc;
++ }
++
++ if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
++ dev_kfree_skb_irq(skb);
++ goto next_desc;
++ }
++
++ length = le16_to_cpu(rx_desc->wb.middle.length0);
++
++ if (!length) {
++ ndev_dbg(netdev, "%s: Last part of the packet spanning"
++ " multiple descriptors\n", netdev->name);
++ dev_kfree_skb_irq(skb);
++ goto next_desc;
++ }
++
++ /* Good Receive */
++ skb_put(skb, length);
++
++ {
++ /* this looks ugly, but it seems compiler issues make it
++ more efficient than reusing j */
++ int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
++
++ /* page alloc/put takes too long and effects small packet
++ * throughput, so unsplit small packets and save the alloc/put*/
++ if (l1 && (l1 <= copybreak) &&
++ ((length + l1) <= adapter->rx_ps_bsize0)) {
++ u8 *vaddr;
++
++ ps_page = &rx_ring->ps_pages[i * PS_PAGE_BUFFERS];
++
++ /* there is no documentation about how to call
++ * kmap_atomic, so we can't hold the mapping
++ * very long */
++ pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
++ PAGE_SIZE, PCI_DMA_FROMDEVICE);
++ vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
++ memcpy(skb_tail_pointer(skb), vaddr, l1);
++ kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
++ pci_dma_sync_single_for_device(pdev, ps_page->dma,
++ PAGE_SIZE, PCI_DMA_FROMDEVICE);
++ /* remove the CRC */
++ l1 -= 4;
++ skb_put(skb, l1);
++ goto copydone;
++ } /* if */
++ }
++
++ for (j = 0; j < PS_PAGE_BUFFERS; j++) {
++ length = le16_to_cpu(rx_desc->wb.upper.length[j]);
++ if (!length)
++ break;
++
++ ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS) + j];
++ pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
++ PCI_DMA_FROMDEVICE);
++ ps_page->dma = 0;
++ skb_fill_page_desc(skb, j, ps_page->page, 0, length);
++ ps_page->page = NULL;
++ skb->len += length;
++ skb->data_len += length;
++ skb->truesize += length;
++ }
++
++ /* strip the ethernet crc, problem is we're using pages now so
++ * this whole operation can get a little cpu intensive */
++ pskb_trim(skb, skb->len - 4);
++
++copydone:
++ total_rx_bytes += skb->len;
++ total_rx_packets++;
++
++ e1000_rx_checksum(adapter, staterr, le16_to_cpu(
++ rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
++
++ if (rx_desc->wb.upper.header_status &
++ cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
++ adapter->rx_hdr_split++;
++
++ e1000_receive_skb(adapter, netdev, skb,
++ staterr, rx_desc->wb.middle.vlan);
++
++next_desc:
++ rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
++ buffer_info->skb = NULL;
++
++ /* return some buffers to hardware, one at a time is too slow */
++ if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
++ adapter->alloc_rx_buf(adapter, cleaned_count);
++ cleaned_count = 0;
++ }
++
++ /* use prefetched values */
++ rx_desc = next_rxd;
++ buffer_info = next_buffer;
++
++ staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
++ }
++ rx_ring->next_to_clean = i;
++
++ cleaned_count = e1000_desc_unused(rx_ring);
++ if (cleaned_count)
++ adapter->alloc_rx_buf(adapter, cleaned_count);
++
++ adapter->total_rx_packets += total_rx_packets;
++ adapter->total_rx_bytes += total_rx_bytes;
++ return cleaned;
++}
++
++/**
++ * e1000_clean_rx_ring - Free Rx Buffers per Queue
++ * @adapter: board private structure
++ **/
++static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
++{
++ struct e1000_ring *rx_ring = adapter->rx_ring;
++ struct e1000_buffer *buffer_info;
++ struct e1000_ps_page *ps_page;
++ struct pci_dev *pdev = adapter->pdev;
++ unsigned long size;
++ unsigned int i, j;
++
++ /* Free all the Rx ring sk_buffs */
++ for (i = 0; i < rx_ring->count; i++) {
++ buffer_info = &rx_ring->buffer_info[i];
++ if (buffer_info->dma) {
++ if (adapter->clean_rx == e1000_clean_rx_irq)
++ pci_unmap_single(pdev, buffer_info->dma,
++ adapter->rx_buffer_len,
++ PCI_DMA_FROMDEVICE);
++ else if (adapter->clean_rx == e1000_clean_rx_irq_jumbo)
++ pci_unmap_page(pdev, buffer_info->dma,
++ PAGE_SIZE, PCI_DMA_FROMDEVICE);
++ else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
++ pci_unmap_single(pdev, buffer_info->dma,
++ adapter->rx_ps_bsize0,
++ PCI_DMA_FROMDEVICE);
++ buffer_info->dma = 0;
++ }
++
++ if (buffer_info->page) {
++ put_page(buffer_info->page);
++ buffer_info->page = NULL;
++ }
++
++ if (buffer_info->skb) {
++ dev_kfree_skb(buffer_info->skb);
++ buffer_info->skb = NULL;
++ }
++
++ for (j = 0; j < PS_PAGE_BUFFERS; j++) {
++ ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS)
++ + j];
++ if (!ps_page->page)
++ break;
++ pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
++ PCI_DMA_FROMDEVICE);
++ ps_page->dma = 0;
++ put_page(ps_page->page);
++ ps_page->page = NULL;
++ }
++ }
++
++ /* there also may be some cached data from a chained receive */
++ if (rx_ring->rx_skb_top) {
++ dev_kfree_skb(rx_ring->rx_skb_top);
++ rx_ring->rx_skb_top = NULL;
++ }
++
++ size = sizeof(struct e1000_buffer) * rx_ring->count;
++ memset(rx_ring->buffer_info, 0, size);
++ size = sizeof(struct e1000_ps_page)
++ * (rx_ring->count * PS_PAGE_BUFFERS);
++ memset(rx_ring->ps_pages, 0, size);
++
++ /* Zero out the descriptor ring */
++ memset(rx_ring->desc, 0, rx_ring->size);
++
++ rx_ring->next_to_clean = 0;
++ rx_ring->next_to_use = 0;
++
++ writel(0, adapter->hw.hw_addr + rx_ring->head);
++ writel(0, adapter->hw.hw_addr + rx_ring->tail);
++}
++
++/**
++ * e1000_intr_msi - Interrupt Handler
++ * @irq: interrupt number
++ * @data: pointer to a network interface device structure
++ **/
++static irqreturn_t e1000_intr_msi(int irq, void *data)
++{
++ struct net_device *netdev = data;
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++ u32 icr = er32(ICR);
++
++ /* read ICR disables interrupts using IAM, so keep up with our
++ * enable/disable accounting */
++ atomic_inc(&adapter->irq_sem);
++
++ if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
++ hw->mac.get_link_status = 1;
++ /* ICH8 workaround-- Call gig speed drop workaround on cable
++ * disconnect (LSC) before accessing any PHY registers */
++ if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
++ (!(er32(STATUS) & E1000_STATUS_LU)))
++ e1000_gig_downshift_workaround_ich8lan(hw);
++
++ /* 80003ES2LAN workaround-- For packet buffer work-around on
++ * link down event; disable receives here in the ISR and reset
++ * adapter in watchdog */
++ if (netif_carrier_ok(netdev) &&
++ adapter->flags & FLAG_RX_NEEDS_RESTART) {
++ /* disable receives */
++ u32 rctl = er32(RCTL);
++ ew32(RCTL, rctl & ~E1000_RCTL_EN);
++ }
++ /* guard against interrupt when we're going down */
++ if (!test_bit(__E1000_DOWN, &adapter->state))
++ mod_timer(&adapter->watchdog_timer, jiffies + 1);
++ }
++
++ if (netif_rx_schedule_prep(netdev)) {
++ adapter->total_tx_bytes = 0;
++ adapter->total_tx_packets = 0;
++ adapter->total_rx_bytes = 0;
++ adapter->total_rx_packets = 0;
++ __netif_rx_schedule(netdev);
++ } else {
++ atomic_dec(&adapter->irq_sem);
++ }
++
++ return IRQ_HANDLED;
++}
++
++/**
++ * e1000_intr - Interrupt Handler
++ * @irq: interrupt number
++ * @data: pointer to a network interface device structure
++ **/
++static irqreturn_t e1000_intr(int irq, void *data)
++{
++ struct net_device *netdev = data;
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++
++ u32 rctl, icr = er32(ICR);
++ if (!icr)
++ return IRQ_NONE; /* Not our interrupt */
++
++ /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
++ * not set, then the adapter didn't send an interrupt */
++ if (!(icr & E1000_ICR_INT_ASSERTED))
++ return IRQ_NONE;
++
++ /* Interrupt Auto-Mask...upon reading ICR,
++ * interrupts are masked. No need for the
++ * IMC write, but it does mean we should
++ * account for it ASAP. */
++ atomic_inc(&adapter->irq_sem);
++
++ if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
++ hw->mac.get_link_status = 1;
++ /* ICH8 workaround-- Call gig speed drop workaround on cable
++ * disconnect (LSC) before accessing any PHY registers */
++ if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
++ (!(er32(STATUS) & E1000_STATUS_LU)))
++ e1000_gig_downshift_workaround_ich8lan(hw);
++
++ /* 80003ES2LAN workaround--
++ * For packet buffer work-around on link down event;
++ * disable receives here in the ISR and
++ * reset adapter in watchdog
++ */
++ if (netif_carrier_ok(netdev) &&
++ (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
++ /* disable receives */
++ rctl = er32(RCTL);
++ ew32(RCTL, rctl & ~E1000_RCTL_EN);
++ }
++ /* guard against interrupt when we're going down */
++ if (!test_bit(__E1000_DOWN, &adapter->state))
++ mod_timer(&adapter->watchdog_timer, jiffies + 1);
++ }
++
++ if (netif_rx_schedule_prep(netdev)) {
++ adapter->total_tx_bytes = 0;
++ adapter->total_tx_packets = 0;
++ adapter->total_rx_bytes = 0;
++ adapter->total_rx_packets = 0;
++ __netif_rx_schedule(netdev);
++ } else {
++ atomic_dec(&adapter->irq_sem);
++ }
++
++ return IRQ_HANDLED;
++}
++
++static int e1000_request_irq(struct e1000_adapter *adapter)
++{
++ struct net_device *netdev = adapter->netdev;
++ void (*handler) = &e1000_intr;
++ int irq_flags = IRQF_SHARED;
++ int err;
++
++ err = pci_enable_msi(adapter->pdev);
++ if (err) {
++ ndev_warn(netdev,
++ "Unable to allocate MSI interrupt Error: %d\n", err);
++ } else {
++ adapter->flags |= FLAG_MSI_ENABLED;
++ handler = &e1000_intr_msi;
++ irq_flags = 0;
++ }
++
++ err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
++ netdev);
++ if (err) {
++ if (adapter->flags & FLAG_MSI_ENABLED)
++ pci_disable_msi(adapter->pdev);
++ ndev_err(netdev,
++ "Unable to allocate interrupt Error: %d\n", err);
++ }
++
++ return err;
++}
++
++static void e1000_free_irq(struct e1000_adapter *adapter)
++{
++ struct net_device *netdev = adapter->netdev;
++
++ free_irq(adapter->pdev->irq, netdev);
++ if (adapter->flags & FLAG_MSI_ENABLED) {
++ pci_disable_msi(adapter->pdev);
++ adapter->flags &= ~FLAG_MSI_ENABLED;
++ }
++}
++
++/**
++ * e1000_irq_disable - Mask off interrupt generation on the NIC
++ **/
++static void e1000_irq_disable(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++
++ atomic_inc(&adapter->irq_sem);
++ ew32(IMC, ~0);
++ e1e_flush();
++ synchronize_irq(adapter->pdev->irq);
++}
++
++/**
++ * e1000_irq_enable - Enable default interrupt generation settings
++ **/
++static void e1000_irq_enable(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++
++ if (atomic_dec_and_test(&adapter->irq_sem)) {
++ ew32(IMS, IMS_ENABLE_MASK);
++ e1e_flush();
++ }
++}
++
++/**
++ * e1000_get_hw_control - get control of the h/w from f/w
++ * @adapter: address of board private structure
++ *
++ * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
++ * For ASF and Pass Through versions of f/w this means that
++ * the driver is loaded. For AMT version (only with 82573)
++ * of the f/w this means that the network i/f is open.
++ **/
++static void e1000_get_hw_control(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ u32 ctrl_ext;
++ u32 swsm;
++
++ /* Let firmware know the driver has taken over */
++ if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
++ swsm = er32(SWSM);
++ ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
++ } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
++ ctrl_ext = er32(CTRL_EXT);
++ ew32(CTRL_EXT,
++ ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
++ }
++}
++
++/**
++ * e1000_release_hw_control - release control of the h/w to f/w
++ * @adapter: address of board private structure
++ *
++ * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
++ * For ASF and Pass Through versions of f/w this means that the
++ * driver is no longer loaded. For AMT version (only with 82573) i
++ * of the f/w this means that the network i/f is closed.
++ *
++ **/
++static void e1000_release_hw_control(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ u32 ctrl_ext;
++ u32 swsm;
++
++ /* Let firmware taken over control of h/w */
++ if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
++ swsm = er32(SWSM);
++ ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
++ } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
++ ctrl_ext = er32(CTRL_EXT);
++ ew32(CTRL_EXT,
++ ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
++ }
++}
++
++static void e1000_release_manageability(struct e1000_adapter *adapter)
++{
++ if (adapter->flags & FLAG_MNG_PT_ENABLED) {
++ struct e1000_hw *hw = &adapter->hw;
++
++ u32 manc = er32(MANC);
++
++ /* re-enable hardware interception of ARP */
++ manc |= E1000_MANC_ARP_EN;
++ manc &= ~E1000_MANC_EN_MNG2HOST;
++
++ /* don't explicitly have to mess with MANC2H since
++ * MANC has an enable disable that gates MANC2H */
++ ew32(MANC, manc);
++ }
++}
++
++/**
++ * @e1000_alloc_ring - allocate memory for a ring structure
++ **/
++static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
++ struct e1000_ring *ring)
++{
++ struct pci_dev *pdev = adapter->pdev;
++
++ ring->desc = pci_alloc_consistent(pdev, ring->size, &ring->dma);
++ if (!ring->desc)
++ return -ENOMEM;
++
++ return 0;
++}
++
++/**
++ * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
++ * @adapter: board private structure
++ *
++ * Return 0 on success, negative on failure
++ **/
++int e1000_setup_tx_resources(struct e1000_adapter *adapter)
++{
++ struct e1000_ring *tx_ring = adapter->tx_ring;
++ int err = -ENOMEM, size;
++
++ size = sizeof(struct e1000_buffer) * tx_ring->count;
++ tx_ring->buffer_info = vmalloc(size);
++ if (!tx_ring->buffer_info)
++ goto err;
++ memset(tx_ring->buffer_info, 0, size);
++
++ /* round up to nearest 4K */
++ tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
++ tx_ring->size = ALIGN(tx_ring->size, 4096);
++
++ err = e1000_alloc_ring_dma(adapter, tx_ring);
++ if (err)
++ goto err;
++
++ tx_ring->next_to_use = 0;
++ tx_ring->next_to_clean = 0;
++ spin_lock_init(&adapter->tx_queue_lock);
++
++ return 0;
++err:
++ vfree(tx_ring->buffer_info);
++ ndev_err(adapter->netdev,
++ "Unable to allocate memory for the transmit descriptor ring\n");
++ return err;
++}
++
++/**
++ * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
++ * @adapter: board private structure
++ *
++ * Returns 0 on success, negative on failure
++ **/
++int e1000_setup_rx_resources(struct e1000_adapter *adapter)
++{
++ struct e1000_ring *rx_ring = adapter->rx_ring;
++ int size, desc_len, err = -ENOMEM;
++
++ size = sizeof(struct e1000_buffer) * rx_ring->count;
++ rx_ring->buffer_info = vmalloc(size);
++ if (!rx_ring->buffer_info)
++ goto err;
++ memset(rx_ring->buffer_info, 0, size);
++
++ rx_ring->ps_pages = kcalloc(rx_ring->count * PS_PAGE_BUFFERS,
++ sizeof(struct e1000_ps_page),
++ GFP_KERNEL);
++ if (!rx_ring->ps_pages)
++ goto err;
++
++ desc_len = sizeof(union e1000_rx_desc_packet_split);
++
++ /* Round up to nearest 4K */
++ rx_ring->size = rx_ring->count * desc_len;
++ rx_ring->size = ALIGN(rx_ring->size, 4096);
++
++ err = e1000_alloc_ring_dma(adapter, rx_ring);
++ if (err)
++ goto err;
++
++ rx_ring->next_to_clean = 0;
++ rx_ring->next_to_use = 0;
++ rx_ring->rx_skb_top = NULL;
++
++ return 0;
++err:
++ vfree(rx_ring->buffer_info);
++ kfree(rx_ring->ps_pages);
++ ndev_err(adapter->netdev,
++ "Unable to allocate memory for the transmit descriptor ring\n");
++ return err;
++}
++
++/**
++ * e1000_clean_tx_ring - Free Tx Buffers
++ * @adapter: board private structure
++ **/
++static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
++{
++ struct e1000_ring *tx_ring = adapter->tx_ring;
++ struct e1000_buffer *buffer_info;
++ unsigned long size;
++ unsigned int i;
++
++ for (i = 0; i < tx_ring->count; i++) {
++ buffer_info = &tx_ring->buffer_info[i];
++ e1000_put_txbuf(adapter, buffer_info);
++ }
++
++ size = sizeof(struct e1000_buffer) * tx_ring->count;
++ memset(tx_ring->buffer_info, 0, size);
++
++ memset(tx_ring->desc, 0, tx_ring->size);
++
++ tx_ring->next_to_use = 0;
++ tx_ring->next_to_clean = 0;
++ tx_ring->last_tx_tso = 0;
++
++ writel(0, adapter->hw.hw_addr + tx_ring->head);
++ writel(0, adapter->hw.hw_addr + tx_ring->tail);
++}
++
++/**
++ * e1000_free_tx_resources - Free Tx Resources per Queue
++ * @adapter: board private structure
++ *
++ * Free all transmit software resources
++ **/
++void e1000_free_tx_resources(struct e1000_adapter *adapter)
++{
++ struct pci_dev *pdev = adapter->pdev;
++ struct e1000_ring *tx_ring = adapter->tx_ring;
++
++ e1000_clean_tx_ring(adapter);
++
++ vfree(tx_ring->buffer_info);
++ tx_ring->buffer_info = NULL;
++
++ pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
++ tx_ring->desc = NULL;
++}
++
++/**
++ * e1000_free_rx_resources - Free Rx Resources
++ * @adapter: board private structure
++ *
++ * Free all receive software resources
++ **/
++
++void e1000_free_rx_resources(struct e1000_adapter *adapter)
++{
++ struct pci_dev *pdev = adapter->pdev;
++ struct e1000_ring *rx_ring = adapter->rx_ring;
++
++ e1000_clean_rx_ring(adapter);
++
++ vfree(rx_ring->buffer_info);
++ rx_ring->buffer_info = NULL;
++
++ kfree(rx_ring->ps_pages);
++ rx_ring->ps_pages = NULL;
++
++ pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
++ rx_ring->desc = NULL;
++}
++
++/**
++ * e1000_update_itr - update the dynamic ITR value based on statistics
++ * Stores a new ITR value based on packets and byte
++ * counts during the last interrupt. The advantage of per interrupt
++ * computation is faster updates and more accurate ITR for the current
++ * traffic pattern. Constants in this function were computed
++ * based on theoretical maximum wire speed and thresholds were set based
++ * on testing data as well as attempting to minimize response time
++ * while increasing bulk throughput.
++ * this functionality is controlled by the InterruptThrottleRate module
++ * parameter (see e1000_param.c)
++ * @adapter: pointer to adapter
++ * @itr_setting: current adapter->itr
++ * @packets: the number of packets during this measurement interval
++ * @bytes: the number of bytes during this measurement interval
++ **/
++static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
++ u16 itr_setting, int packets,
++ int bytes)
++{
++ unsigned int retval = itr_setting;
++
++ if (packets == 0)
++ goto update_itr_done;
++
++ switch (itr_setting) {
++ case lowest_latency:
++ /* handle TSO and jumbo frames */
++ if (bytes/packets > 8000)
++ retval = bulk_latency;
++ else if ((packets < 5) && (bytes > 512)) {
++ retval = low_latency;
++ }
++ break;
++ case low_latency: /* 50 usec aka 20000 ints/s */
++ if (bytes > 10000) {
++ /* this if handles the TSO accounting */
++ if (bytes/packets > 8000) {
++ retval = bulk_latency;
++ } else if ((packets < 10) || ((bytes/packets) > 1200)) {
++ retval = bulk_latency;
++ } else if ((packets > 35)) {
++ retval = lowest_latency;
++ }
++ } else if (bytes/packets > 2000) {
++ retval = bulk_latency;
++ } else if (packets <= 2 && bytes < 512) {
++ retval = lowest_latency;
++ }
++ break;
++ case bulk_latency: /* 250 usec aka 4000 ints/s */
++ if (bytes > 25000) {
++ if (packets > 35) {
++ retval = low_latency;
++ }
++ } else if (bytes < 6000) {
++ retval = low_latency;
++ }
++ break;
++ }
++
++update_itr_done:
++ return retval;
++}
++
++static void e1000_set_itr(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ u16 current_itr;
++ u32 new_itr = adapter->itr;
++
++ /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
++ if (adapter->link_speed != SPEED_1000) {
++ current_itr = 0;
++ new_itr = 4000;
++ goto set_itr_now;
++ }
++
++ adapter->tx_itr = e1000_update_itr(adapter,
++ adapter->tx_itr,
++ adapter->total_tx_packets,
++ adapter->total_tx_bytes);
++ /* conservative mode (itr 3) eliminates the lowest_latency setting */
++ if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
++ adapter->tx_itr = low_latency;
++
++ adapter->rx_itr = e1000_update_itr(adapter,
++ adapter->rx_itr,
++ adapter->total_rx_packets,
++ adapter->total_rx_bytes);
++ /* conservative mode (itr 3) eliminates the lowest_latency setting */
++ if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
++ adapter->rx_itr = low_latency;
++
++ current_itr = max(adapter->rx_itr, adapter->tx_itr);
++
++ switch (current_itr) {
++ /* counts and packets in update_itr are dependent on these numbers */
++ case lowest_latency:
++ new_itr = 70000;
++ break;
++ case low_latency:
++ new_itr = 20000; /* aka hwitr = ~200 */
++ break;
++ case bulk_latency:
++ new_itr = 4000;
++ break;
++ default:
++ break;
++ }
++
++set_itr_now:
++ if (new_itr != adapter->itr) {
++ /* this attempts to bias the interrupt rate towards Bulk
++ * by adding intermediate steps when interrupt rate is
++ * increasing */
++ new_itr = new_itr > adapter->itr ?
++ min(adapter->itr + (new_itr >> 2), new_itr) :
++ new_itr;
++ adapter->itr = new_itr;
++ ew32(ITR, 1000000000 / (new_itr * 256));
++ }
++}
++
++/**
++ * e1000_clean - NAPI Rx polling callback
++ * @adapter: board private structure
++ **/
++static int e1000_clean(struct net_device *poll_dev, int *budget)
++{
++ struct e1000_adapter *adapter;
++ int work_to_do = min(*budget, poll_dev->quota);
++ int tx_cleaned = 0, work_done = 0;
++
++ /* Must NOT use netdev_priv macro here. */
++ adapter = poll_dev->priv;
++
++ /* Keep link state information with original netdev */
++ if (!netif_carrier_ok(poll_dev))
++ goto quit_polling;
++
++ /* e1000_clean is called per-cpu. This lock protects
++ * tx_ring from being cleaned by multiple cpus
++ * simultaneously. A failure obtaining the lock means
++ * tx_ring is currently being cleaned anyway. */
++ if (spin_trylock(&adapter->tx_queue_lock)) {
++ tx_cleaned = e1000_clean_tx_irq(adapter);
++ spin_unlock(&adapter->tx_queue_lock);
++ }
++
++ adapter->clean_rx(adapter, &work_done, work_to_do);
++ *budget -= work_done;
++ poll_dev->quota -= work_done;
++
++ /* If no Tx and not enough Rx work done, exit the polling mode */
++ if ((!tx_cleaned && (work_done == 0)) ||
++ !netif_running(poll_dev)) {
++quit_polling:
++ if (adapter->itr_setting & 3)
++ e1000_set_itr(adapter);
++ netif_rx_complete(poll_dev);
++ if (test_bit(__E1000_DOWN, &adapter->state))
++ atomic_dec(&adapter->irq_sem);
++ else
++ e1000_irq_enable(adapter);
++ return 0;
++ }
++
++ return 1;
++}
++
++static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++ u32 vfta, index;
++
++ /* don't update vlan cookie if already programmed */
++ if ((adapter->hw.mng_cookie.status &
++ E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
++ (vid == adapter->mng_vlan_id))
++ return;
++ /* add VID to filter table */
++ index = (vid >> 5) & 0x7F;
++ vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
++ vfta |= (1 << (vid & 0x1F));
++ e1000_write_vfta(hw, index, vfta);
++}
++
++static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++ u32 vfta, index;
++
++ e1000_irq_disable(adapter);
++ vlan_group_set_device(adapter->vlgrp, vid, NULL);
++ e1000_irq_enable(adapter);
++
++ if ((adapter->hw.mng_cookie.status &
++ E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
++ (vid == adapter->mng_vlan_id)) {
++ /* release control to f/w */
++ e1000_release_hw_control(adapter);
++ return;
++ }
++
++ /* remove VID from filter table */
++ index = (vid >> 5) & 0x7F;
++ vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
++ vfta &= ~(1 << (vid & 0x1F));
++ e1000_write_vfta(hw, index, vfta);
++}
++
++static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
++{
++ struct net_device *netdev = adapter->netdev;
++ u16 vid = adapter->hw.mng_cookie.vlan_id;
++ u16 old_vid = adapter->mng_vlan_id;
++
++ if (!adapter->vlgrp)
++ return;
++
++ if (!vlan_group_get_device(adapter->vlgrp, vid)) {
++ adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
++ if (adapter->hw.mng_cookie.status &
++ E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
++ e1000_vlan_rx_add_vid(netdev, vid);
++ adapter->mng_vlan_id = vid;
++ }
++
++ if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
++ (vid != old_vid) &&
++ !vlan_group_get_device(adapter->vlgrp, old_vid))
++ e1000_vlan_rx_kill_vid(netdev, old_vid);
++ } else {
++ adapter->mng_vlan_id = vid;
++ }
++}
++
++
++static void e1000_vlan_rx_register(struct net_device *netdev,
++ struct vlan_group *grp)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++ u32 ctrl, rctl;
++
++ e1000_irq_disable(adapter);
++ adapter->vlgrp = grp;
++
++ if (grp) {
++ /* enable VLAN tag insert/strip */
++ ctrl = er32(CTRL);
++ ctrl |= E1000_CTRL_VME;
++ ew32(CTRL, ctrl);
++
++ if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
++ /* enable VLAN receive filtering */
++ rctl = er32(RCTL);
++ rctl |= E1000_RCTL_VFE;
++ rctl &= ~E1000_RCTL_CFIEN;
++ ew32(RCTL, rctl);
++ e1000_update_mng_vlan(adapter);
++ }
++ } else {
++ /* disable VLAN tag insert/strip */
++ ctrl = er32(CTRL);
++ ctrl &= ~E1000_CTRL_VME;
++ ew32(CTRL, ctrl);
++
++ if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
++ /* disable VLAN filtering */
++ rctl = er32(RCTL);
++ rctl &= ~E1000_RCTL_VFE;
++ ew32(RCTL, rctl);
++ if (adapter->mng_vlan_id !=
++ (u16)E1000_MNG_VLAN_NONE) {
++ e1000_vlan_rx_kill_vid(netdev,
++ adapter->mng_vlan_id);
++ adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
++ }
++ }
++ }
++
++ e1000_irq_enable(adapter);
++}
++
++static void e1000_restore_vlan(struct e1000_adapter *adapter)
++{
++ u16 vid;
++
++ e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
++
++ if (!adapter->vlgrp)
++ return;
++
++ for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
++ if (!vlan_group_get_device(adapter->vlgrp, vid))
++ continue;
++ e1000_vlan_rx_add_vid(adapter->netdev, vid);
++ }
++}
++
++static void e1000_init_manageability(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ u32 manc, manc2h;
++
++ if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
++ return;
++
++ manc = er32(MANC);
++
++ /* disable hardware interception of ARP */
++ manc &= ~(E1000_MANC_ARP_EN);
++
++ /* enable receiving management packets to the host. this will probably
++ * generate destination unreachable messages from the host OS, but
++ * the packets will be handled on SMBUS */
++ manc |= E1000_MANC_EN_MNG2HOST;
++ manc2h = er32(MANC2H);
++#define E1000_MNG2HOST_PORT_623 (1 << 5)
++#define E1000_MNG2HOST_PORT_664 (1 << 6)
++ manc2h |= E1000_MNG2HOST_PORT_623;
++ manc2h |= E1000_MNG2HOST_PORT_664;
++ ew32(MANC2H, manc2h);
++ ew32(MANC, manc);
++}
++
++/**
++ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
++ * @adapter: board private structure
++ *
++ * Configure the Tx unit of the MAC after a reset.
++ **/
++static void e1000_configure_tx(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ struct e1000_ring *tx_ring = adapter->tx_ring;
++ u64 tdba;
++ u32 tdlen, tctl, tipg, tarc;
++ u32 ipgr1, ipgr2;
++
++ /* Setup the HW Tx Head and Tail descriptor pointers */
++ tdba = tx_ring->dma;
++ tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
++ ew32(TDBAL, (tdba & DMA_32BIT_MASK));
++ ew32(TDBAH, (tdba >> 32));
++ ew32(TDLEN, tdlen);
++ ew32(TDH, 0);
++ ew32(TDT, 0);
++ tx_ring->head = E1000_TDH;
++ tx_ring->tail = E1000_TDT;
++
++ /* Set the default values for the Tx Inter Packet Gap timer */
++ tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
++ ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
++ ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
++
++ if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
++ ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
++
++ tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
++ tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
++ ew32(TIPG, tipg);
++
++ /* Set the Tx Interrupt Delay register */
++ ew32(TIDV, adapter->tx_int_delay);
++ /* tx irq moderation */
++ ew32(TADV, adapter->tx_abs_int_delay);
++
++ /* Program the Transmit Control Register */
++ tctl = er32(TCTL);
++ tctl &= ~E1000_TCTL_CT;
++ tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
++ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
++
++ if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
++ tarc = er32(TARC0);
++ /* set the speed mode bit, we'll clear it if we're not at
++ * gigabit link later */
++#define SPEED_MODE_BIT (1 << 21)
++ tarc |= SPEED_MODE_BIT;
++ ew32(TARC0, tarc);
++ }
++
++ /* errata: program both queues to unweighted RR */
++ if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
++ tarc = er32(TARC0);
++ tarc |= 1;
++ ew32(TARC0, tarc);
++ tarc = er32(TARC1);
++ tarc |= 1;
++ ew32(TARC1, tarc);
++ }
++
++ e1000_config_collision_dist(hw);
++
++ /* Setup Transmit Descriptor Settings for eop descriptor */
++ adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
++
++ /* only set IDE if we are delaying interrupts using the timers */
++ if (adapter->tx_int_delay)
++ adapter->txd_cmd |= E1000_TXD_CMD_IDE;
++
++ /* enable Report Status bit */
++ adapter->txd_cmd |= E1000_TXD_CMD_RS;
++
++ ew32(TCTL, tctl);
++
++ adapter->tx_queue_len = adapter->netdev->tx_queue_len;
++}
++
++/**
++ * e1000_setup_rctl - configure the receive control registers
++ * @adapter: Board private structure
++ **/
++#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
++ (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
++static void e1000_setup_rctl(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ u32 rctl, rfctl;
++ u32 psrctl = 0;
++ u32 pages = 0;
++
++ /* Program MC offset vector base */
++ rctl = er32(RCTL);
++ rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
++ rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
++ E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
++ (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
++
++ /* Do not Store bad packets */
++ rctl &= ~E1000_RCTL_SBP;
++
++ /* Enable Long Packet receive */
++ if (adapter->netdev->mtu <= ETH_DATA_LEN)
++ rctl &= ~E1000_RCTL_LPE;
++ else
++ rctl |= E1000_RCTL_LPE;
++
++ /* Setup buffer sizes */
++ rctl &= ~E1000_RCTL_SZ_4096;
++ rctl |= E1000_RCTL_BSEX;
++ switch (adapter->rx_buffer_len) {
++ case 256:
++ rctl |= E1000_RCTL_SZ_256;
++ rctl &= ~E1000_RCTL_BSEX;
++ break;
++ case 512:
++ rctl |= E1000_RCTL_SZ_512;
++ rctl &= ~E1000_RCTL_BSEX;
++ break;
++ case 1024:
++ rctl |= E1000_RCTL_SZ_1024;
++ rctl &= ~E1000_RCTL_BSEX;
++ break;
++ case 2048:
++ default:
++ rctl |= E1000_RCTL_SZ_2048;
++ rctl &= ~E1000_RCTL_BSEX;
++ break;
++ case 4096:
++ rctl |= E1000_RCTL_SZ_4096;
++ break;
++ case 8192:
++ rctl |= E1000_RCTL_SZ_8192;
++ break;
++ case 16384:
++ rctl |= E1000_RCTL_SZ_16384;
++ break;
++ }
++
++#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
++ /*
++ * 82571 and greater support packet-split where the protocol
++ * header is placed in skb->data and the packet data is
++ * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
++ * In the case of a non-split, skb->data is linearly filled,
++ * followed by the page buffers. Therefore, skb->data is
++ * sized to hold the largest protocol header.
++ *
++ * allocations using alloc_page take too long for regular MTU
++ * so only enable packet split for jumbo frames
++ *
++ * Using pages when the page size is greater than 16k wastes
++ * a lot of memory, since we allocate 3 pages at all times
++ * per packet.
++ */
++ adapter->rx_ps_pages = 0;
++ pages = PAGE_USE_COUNT(adapter->netdev->mtu);
++ if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
++ adapter->rx_ps_pages = pages;
++#endif
++ if (adapter->rx_ps_pages) {
++ /* Configure extra packet-split registers */
++ rfctl = er32(RFCTL);
++ rfctl |= E1000_RFCTL_EXTEN;
++ /* disable packet split support for IPv6 extension headers,
++ * because some malformed IPv6 headers can hang the RX */
++ rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
++ E1000_RFCTL_NEW_IPV6_EXT_DIS);
++
++ ew32(RFCTL, rfctl);
++
++ /* disable the stripping of CRC because it breaks
++ * BMC firmware connected over SMBUS */
++ rctl |= E1000_RCTL_DTYP_PS /* | E1000_RCTL_SECRC */;
++
++ psrctl |= adapter->rx_ps_bsize0 >>
++ E1000_PSRCTL_BSIZE0_SHIFT;
++
++ switch (adapter->rx_ps_pages) {
++ case 3:
++ psrctl |= PAGE_SIZE <<
++ E1000_PSRCTL_BSIZE3_SHIFT;
++ case 2:
++ psrctl |= PAGE_SIZE <<
++ E1000_PSRCTL_BSIZE2_SHIFT;
++ case 1:
++ psrctl |= PAGE_SIZE >>
++ E1000_PSRCTL_BSIZE1_SHIFT;
++ break;
++ }
++
++ ew32(PSRCTL, psrctl);
++ }
++
++ ew32(RCTL, rctl);
++}
++
++/**
++ * e1000_configure_rx - Configure Receive Unit after Reset
++ * @adapter: board private structure
++ *
++ * Configure the Rx unit of the MAC after a reset.
++ **/
++static void e1000_configure_rx(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ struct e1000_ring *rx_ring = adapter->rx_ring;
++ u64 rdba;
++ u32 rdlen, rctl, rxcsum, ctrl_ext;
++
++ if (adapter->rx_ps_pages) {
++ /* this is a 32 byte descriptor */
++ rdlen = rx_ring->count *
++ sizeof(union e1000_rx_desc_packet_split);
++ adapter->clean_rx = e1000_clean_rx_irq_ps;
++ adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
++ } else if (adapter->netdev->mtu > ETH_FRAME_LEN + VLAN_HLEN + 4) {
++ rdlen = rx_ring->count *
++ sizeof(struct e1000_rx_desc);
++ adapter->clean_rx = e1000_clean_rx_irq_jumbo;
++ adapter->alloc_rx_buf = e1000_alloc_rx_buffers_jumbo;
++ } else {
++ rdlen = rx_ring->count *
++ sizeof(struct e1000_rx_desc);
++ adapter->clean_rx = e1000_clean_rx_irq;
++ adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
++ }
++
++ /* disable receives while setting up the descriptors */
++ rctl = er32(RCTL);
++ ew32(RCTL, rctl & ~E1000_RCTL_EN);
++ e1e_flush();
++ msleep(10);
++
++ /* set the Receive Delay Timer Register */
++ ew32(RDTR, adapter->rx_int_delay);
++
++ /* irq moderation */
++ ew32(RADV, adapter->rx_abs_int_delay);
++ if (adapter->itr_setting != 0)
++ ew32(ITR,
++ 1000000000 / (adapter->itr * 256));
++
++ ctrl_ext = er32(CTRL_EXT);
++ /* Reset delay timers after every interrupt */
++ ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
++ /* Auto-Mask interrupts upon ICR access */
++ ctrl_ext |= E1000_CTRL_EXT_IAME;
++ ew32(IAM, 0xffffffff);
++ ew32(CTRL_EXT, ctrl_ext);
++ e1e_flush();
++
++ /* Setup the HW Rx Head and Tail Descriptor Pointers and
++ * the Base and Length of the Rx Descriptor Ring */
++ rdba = rx_ring->dma;
++ ew32(RDBAL, (rdba & DMA_32BIT_MASK));
++ ew32(RDBAH, (rdba >> 32));
++ ew32(RDLEN, rdlen);
++ ew32(RDH, 0);
++ ew32(RDT, 0);
++ rx_ring->head = E1000_RDH;
++ rx_ring->tail = E1000_RDT;
++
++ /* Enable Receive Checksum Offload for TCP and UDP */
++ rxcsum = er32(RXCSUM);
++ if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
++ rxcsum |= E1000_RXCSUM_TUOFL;
++
++ /* IPv4 payload checksum for UDP fragments must be
++ * used in conjunction with packet-split. */
++ if (adapter->rx_ps_pages)
++ rxcsum |= E1000_RXCSUM_IPPCSE;
++ } else {
++ rxcsum &= ~E1000_RXCSUM_TUOFL;
++ /* no need to clear IPPCSE as it defaults to 0 */
++ }
++ ew32(RXCSUM, rxcsum);
++
++ /* Enable early receives on supported devices, only takes effect when
++ * packet size is equal or larger than the specified value (in 8 byte
++ * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
++ if ((adapter->flags & FLAG_HAS_ERT) &&
++ (adapter->netdev->mtu > ETH_DATA_LEN))
++ ew32(ERT, E1000_ERT_2048);
++
++ /* Enable Receives */
++ ew32(RCTL, rctl);
++}
++
++/**
++ * e1000_mc_addr_list_update - Update Multicast addresses
++ * @hw: pointer to the HW structure
++ * @mc_addr_list: array of multicast addresses to program
++ * @mc_addr_count: number of multicast addresses to program
++ * @rar_used_count: the first RAR register free to program
++ * @rar_count: total number of supported Receive Address Registers
++ *
++ * Updates the Receive Address Registers and Multicast Table Array.
++ * The caller must have a packed mc_addr_list of multicast addresses.
++ * The parameter rar_count will usually be hw->mac.rar_entry_count
++ * unless there are workarounds that change this. Currently no func pointer
++ * exists and all implementations are handled in the generic version of this
++ * function.
++ **/
++static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list,
++ u32 mc_addr_count, u32 rar_used_count,
++ u32 rar_count)
++{
++ hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
++ rar_used_count, rar_count);
++}
++
++/**
++ * e1000_set_multi - Multicast and Promiscuous mode set
++ * @netdev: network interface device structure
++ *
++ * The set_multi entry point is called whenever the multicast address
++ * list or the network interface flags are updated. This routine is
++ * responsible for configuring the hardware for proper multicast,
++ * promiscuous mode, and all-multi behavior.
++ **/
++static void e1000_set_multi(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++ struct e1000_mac_info *mac = &hw->mac;
++ struct dev_mc_list *mc_ptr;
++ u8 *mta_list;
++ u32 rctl;
++ int i;
++
++ /* Check for Promiscuous and All Multicast modes */
++
++ rctl = er32(RCTL);
++
++ if (netdev->flags & IFF_PROMISC) {
++ rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
++ } else if (netdev->flags & IFF_ALLMULTI) {
++ rctl |= E1000_RCTL_MPE;
++ rctl &= ~E1000_RCTL_UPE;
++ } else {
++ rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
++ }
++
++ ew32(RCTL, rctl);
++
++ if (netdev->mc_count) {
++ mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
++ if (!mta_list)
++ return;
++
++ /* prepare a packed array of only addresses. */
++ mc_ptr = netdev->mc_list;
++
++ for (i = 0; i < netdev->mc_count; i++) {
++ if (!mc_ptr)
++ break;
++ memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
++ ETH_ALEN);
++ mc_ptr = mc_ptr->next;
++ }
++
++ e1000_mc_addr_list_update(hw, mta_list, i, 1,
++ mac->rar_entry_count);
++ kfree(mta_list);
++ } else {
++ /*
++ * if we're called from probe, we might not have
++ * anything to do here, so clear out the list
++ */
++ e1000_mc_addr_list_update(hw, NULL, 0, 1,
++ mac->rar_entry_count);
++ }
++}
++
++/**
++ * e1000_configure - configure the hardware for RX and TX
++ * @adapter: private board structure
++ **/
++static void e1000_configure(struct e1000_adapter *adapter)
++{
++ e1000_set_multi(adapter->netdev);
++
++ e1000_restore_vlan(adapter);
++ e1000_init_manageability(adapter);
++
++ e1000_configure_tx(adapter);
++ e1000_setup_rctl(adapter);
++ e1000_configure_rx(adapter);
++ adapter->alloc_rx_buf(adapter,
++ e1000_desc_unused(adapter->rx_ring));
++}
++
++/**
++ * e1000_power_up_phy - restore link in case the phy was powered down
++ * @adapter: address of board private structure
++ *
++ * The phy may be powered down to save power and turn off link when the
++ * driver is unloaded and wake on lan is not enabled (among others)
++ * *** this routine MUST be followed by a call to e1000_reset ***
++ **/
++void e1000_power_up_phy(struct e1000_adapter *adapter)
++{
++ u16 mii_reg = 0;
++
++ /* Just clear the power down bit to wake the phy back up */
++ if (adapter->hw.media_type == e1000_media_type_copper) {
++ /* according to the manual, the phy will retain its
++ * settings across a power-down/up cycle */
++ e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
++ mii_reg &= ~MII_CR_POWER_DOWN;
++ e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
++ }
++
++ adapter->hw.mac.ops.setup_link(&adapter->hw);
++}
++
++/**
++ * e1000_power_down_phy - Power down the PHY
++ *
++ * Power down the PHY so no link is implied when interface is down
++ * The PHY cannot be powered down is management or WoL is active
++ */
++static void e1000_power_down_phy(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ u16 mii_reg;
++
++ /* WoL is enabled */
++ if (!adapter->wol)
++ return;
++
++ /* non-copper PHY? */
++ if (adapter->hw.media_type != e1000_media_type_copper)
++ return;
++
++ /* reset is blocked because of a SoL/IDER session */
++ if (e1000_check_mng_mode(hw) ||
++ e1000_check_reset_block(hw))
++ return;
++
++ /* managebility (AMT) is enabled */
++ if (er32(MANC) & E1000_MANC_SMBUS_EN)
++ return;
++
++ /* power down the PHY */
++ e1e_rphy(hw, PHY_CONTROL, &mii_reg);
++ mii_reg |= MII_CR_POWER_DOWN;
++ e1e_wphy(hw, PHY_CONTROL, mii_reg);
++ mdelay(1);
++}
++
++/**
++ * e1000_reset - bring the hardware into a known good state
++ *
++ * This function boots the hardware and enables some settings that
++ * require a configuration cycle of the hardware - those cannot be
++ * set/changed during runtime. After reset the device needs to be
++ * properly configured for rx, tx etc.
++ */
++void e1000_reset(struct e1000_adapter *adapter)
++{
++ struct e1000_mac_info *mac = &adapter->hw.mac;
++ struct e1000_hw *hw = &adapter->hw;
++ u32 tx_space, min_tx_space, min_rx_space;
++ u16 hwm;
++
++ if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) {
++ /* To maintain wire speed transmits, the Tx FIFO should be
++ * large enough to accommodate two full transmit packets,
++ * rounded up to the next 1KB and expressed in KB. Likewise,
++ * the Rx FIFO should be large enough to accommodate at least
++ * one full receive packet and is similarly rounded up and
++ * expressed in KB. */
++ adapter->pba = er32(PBA);
++ /* upper 16 bits has Tx packet buffer allocation size in KB */
++ tx_space = adapter->pba >> 16;
++ /* lower 16 bits has Rx packet buffer allocation size in KB */
++ adapter->pba &= 0xffff;
++ /* the tx fifo also stores 16 bytes of information about the tx
++ * but don't include ethernet FCS because hardware appends it */
++ min_tx_space = (mac->max_frame_size +
++ sizeof(struct e1000_tx_desc) -
++ ETH_FCS_LEN) * 2;
++ min_tx_space = ALIGN(min_tx_space, 1024);
++ min_tx_space >>= 10;
++ /* software strips receive CRC, so leave room for it */
++ min_rx_space = mac->max_frame_size;
++ min_rx_space = ALIGN(min_rx_space, 1024);
++ min_rx_space >>= 10;
++
++ /* If current Tx allocation is less than the min Tx FIFO size,
++ * and the min Tx FIFO size is less than the current Rx FIFO
++ * allocation, take space away from current Rx allocation */
++ if (tx_space < min_tx_space &&
++ ((min_tx_space - tx_space) < adapter->pba)) {
++ adapter->pba -= - (min_tx_space - tx_space);
++
++ /* if short on rx space, rx wins and must trump tx
++ * adjustment or use Early Receive if available */
++ if ((adapter->pba < min_rx_space) &&
++ (!(adapter->flags & FLAG_HAS_ERT)))
++ /* ERT enabled in e1000_configure_rx */
++ adapter->pba = min_rx_space;
++ }
++ }
++
++ ew32(PBA, adapter->pba);
++
++ /* flow control settings */
++ /* The high water mark must be low enough to fit one full frame
++ * (or the size used for early receive) above it in the Rx FIFO.
++ * Set it to the lower of:
++ * - 90% of the Rx FIFO size, and
++ * - the full Rx FIFO size minus the early receive size (for parts
++ * with ERT support assuming ERT set to E1000_ERT_2048), or
++ * - the full Rx FIFO size minus one full frame */
++ if (adapter->flags & FLAG_HAS_ERT)
++ hwm = min(((adapter->pba << 10) * 9 / 10),
++ ((adapter->pba << 10) - (E1000_ERT_2048 << 3)));
++ else
++ hwm = min(((adapter->pba << 10) * 9 / 10),
++ ((adapter->pba << 10) - mac->max_frame_size));
++
++ mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
++ mac->fc_low_water = mac->fc_high_water - 8;
++
++ if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
++ mac->fc_pause_time = 0xFFFF;
++ else
++ mac->fc_pause_time = E1000_FC_PAUSE_TIME;
++ mac->fc = mac->original_fc;
++
++ /* Allow time for pending master requests to run */
++ mac->ops.reset_hw(hw);
++ ew32(WUC, 0);
++
++ if (mac->ops.init_hw(hw))
++ ndev_err(adapter->netdev, "Hardware Error\n");
++
++ e1000_update_mng_vlan(adapter);
++
++ /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
++ ew32(VET, ETH_P_8021Q);
++
++ e1000_reset_adaptive(hw);
++ e1000_get_phy_info(hw);
++
++ if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
++ u16 phy_data = 0;
++ /* speed up time to link by disabling smart power down, ignore
++ * the return value of this function because there is nothing
++ * different we would do if it failed */
++ e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
++ phy_data &= ~IGP02E1000_PM_SPD;
++ e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
++ }
++
++ e1000_release_manageability(adapter);
++}
++
++int e1000_up(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++
++ /* hardware has been reset, we need to reload some things */
++ e1000_configure(adapter);
++
++ clear_bit(__E1000_DOWN, &adapter->state);
++
++ netif_poll_enable(adapter->netdev);
++ e1000_irq_enable(adapter);
++
++ /* fire a link change interrupt to start the watchdog */
++ ew32(ICS, E1000_ICS_LSC);
++ return 0;
++}
++
++void e1000_down(struct e1000_adapter *adapter)
++{
++ struct net_device *netdev = adapter->netdev;
++ struct e1000_hw *hw = &adapter->hw;
++ u32 tctl, rctl;
++
++ /* signal that we're down so the interrupt handler does not
++ * reschedule our watchdog timer */
++ set_bit(__E1000_DOWN, &adapter->state);
++
++ /* disable receives in the hardware */
++ rctl = er32(RCTL);
++ ew32(RCTL, rctl & ~E1000_RCTL_EN);
++ /* flush and sleep below */
++
++ netif_stop_queue(netdev);
++
++ /* disable transmits in the hardware */
++ tctl = er32(TCTL);
++ tctl &= ~E1000_TCTL_EN;
++ ew32(TCTL, tctl);
++ /* flush both disables and wait for them to finish */
++ e1e_flush();
++ msleep(10);
++
++ netif_poll_disable(netdev);
++ e1000_irq_disable(adapter);
++
++ del_timer_sync(&adapter->watchdog_timer);
++ del_timer_sync(&adapter->phy_info_timer);
++
++ netdev->tx_queue_len = adapter->tx_queue_len;
++ netif_carrier_off(netdev);
++ adapter->link_speed = 0;
++ adapter->link_duplex = 0;
++
++ e1000_reset(adapter);
++ e1000_clean_tx_ring(adapter);
++ e1000_clean_rx_ring(adapter);
++
++ /*
++ * TODO: for power management, we could drop the link and
++ * pci_disable_device here.
++ */
++}
++
++void e1000_reinit_locked(struct e1000_adapter *adapter)
++{
++ might_sleep();
++ while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
++ msleep(1);
++ e1000_down(adapter);
++ e1000_up(adapter);
++ clear_bit(__E1000_RESETTING, &adapter->state);
++}
++
++/**
++ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
++ * @adapter: board private structure to initialize
++ *
++ * e1000_sw_init initializes the Adapter private data structure.
++ * Fields are initialized based on PCI device information and
++ * OS network device settings (MTU size).
++ **/
++static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ struct net_device *netdev = adapter->netdev;
++
++ adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
++ adapter->rx_ps_bsize0 = 128;
++ hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
++ hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
++
++ adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
++ if (!adapter->tx_ring)
++ goto err;
++
++ adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
++ if (!adapter->rx_ring)
++ goto err;
++
++ spin_lock_init(&adapter->tx_queue_lock);
++
++ /* Explicitly disable IRQ since the NIC can be in any state. */
++ atomic_set(&adapter->irq_sem, 0);
++ e1000_irq_disable(adapter);
++
++ spin_lock_init(&adapter->stats_lock);
++
++ set_bit(__E1000_DOWN, &adapter->state);
++ return 0;
++
++err:
++ ndev_err(netdev, "Unable to allocate memory for queues\n");
++ kfree(adapter->rx_ring);
++ kfree(adapter->tx_ring);
++ return -ENOMEM;
++}
++
++/**
++ * e1000_open - Called when a network interface is made active
++ * @netdev: network interface device structure
++ *
++ * Returns 0 on success, negative value on failure
++ *
++ * The open entry point is called when a network interface is made
++ * active by the system (IFF_UP). At this point all resources needed
++ * for transmit and receive operations are allocated, the interrupt
++ * handler is registered with the OS, the watchdog timer is started,
++ * and the stack is notified that the interface is ready.
++ **/
++static int e1000_open(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++ int err;
++
++ /* disallow open during test */
++ if (test_bit(__E1000_TESTING, &adapter->state))
++ return -EBUSY;
++
++ /* allocate transmit descriptors */
++ err = e1000_setup_tx_resources(adapter);
++ if (err)
++ goto err_setup_tx;
++
++ /* allocate receive descriptors */
++ err = e1000_setup_rx_resources(adapter);
++ if (err)
++ goto err_setup_rx;
++
++ e1000_power_up_phy(adapter);
++
++ adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
++ if ((adapter->hw.mng_cookie.status &
++ E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
++ e1000_update_mng_vlan(adapter);
++
++ /* If AMT is enabled, let the firmware know that the network
++ * interface is now open */
++ if ((adapter->flags & FLAG_HAS_AMT) &&
++ e1000_check_mng_mode(&adapter->hw))
++ e1000_get_hw_control(adapter);
++
++ /* before we allocate an interrupt, we must be ready to handle it.
++ * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
++ * as soon as we call pci_request_irq, so we have to setup our
++ * clean_rx handler before we do so. */
++ e1000_configure(adapter);
++
++ err = e1000_request_irq(adapter);
++ if (err)
++ goto err_req_irq;
++
++ /* From here on the code is the same as e1000_up() */
++ clear_bit(__E1000_DOWN, &adapter->state);
++
++ netif_poll_enable(netdev);
++
++ e1000_irq_enable(adapter);
++
++ /* fire a link status change interrupt to start the watchdog */
++ ew32(ICS, E1000_ICS_LSC);
++
++ return E1000_SUCCESS;
++
++err_req_irq:
++ e1000_release_hw_control(adapter);
++ e1000_power_down_phy(adapter);
++ e1000_free_rx_resources(adapter);
++err_setup_rx:
++ e1000_free_tx_resources(adapter);
++err_setup_tx:
++ e1000_reset(adapter);
++
++ return err;
++}
++
++/**
++ * e1000_close - Disables a network interface
++ * @netdev: network interface device structure
++ *
++ * Returns 0, this is not allowed to fail
++ *
++ * The close entry point is called when an interface is de-activated
++ * by the OS. The hardware is still under the drivers control, but
++ * needs to be disabled. A global MAC reset is issued to stop the
++ * hardware, and all transmit and receive resources are freed.
++ **/
++static int e1000_close(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++
++ WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
++ e1000_down(adapter);
++ e1000_power_down_phy(adapter);
++ e1000_free_irq(adapter);
++
++ e1000_free_tx_resources(adapter);
++ e1000_free_rx_resources(adapter);
++
++ /* kill manageability vlan ID if supported, but not if a vlan with
++ * the same ID is registered on the host OS (let 8021q kill it) */
++ if ((adapter->hw.mng_cookie.status &
++ E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
++ !(adapter->vlgrp &&
++ vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
++ e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
++
++ /* If AMT is enabled, let the firmware know that the network
++ * interface is now closed */
++ if ((adapter->flags & FLAG_HAS_AMT) &&
++ e1000_check_mng_mode(&adapter->hw))
++ e1000_release_hw_control(adapter);
++
++ return 0;
++}
++/**
++ * e1000_set_mac - Change the Ethernet Address of the NIC
++ * @netdev: network interface device structure
++ * @p: pointer to an address structure
++ *
++ * Returns 0 on success, negative on failure
++ **/
++static int e1000_set_mac(struct net_device *netdev, void *p)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct sockaddr *addr = p;
++
++ if (!is_valid_ether_addr(addr->sa_data))
++ return -EADDRNOTAVAIL;
++
++ memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
++ memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
++
++ e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
++
++ if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
++ /* activate the work around */
++ e1000_set_laa_state_82571(&adapter->hw, 1);
++
++ /* Hold a copy of the LAA in RAR[14] This is done so that
++ * between the time RAR[0] gets clobbered and the time it
++ * gets fixed (in e1000_watchdog), the actual LAA is in one
++ * of the RARs and no incoming packets directed to this port
++ * are dropped. Eventually the LAA will be in RAR[0] and
++ * RAR[14] */
++ e1000_rar_set(&adapter->hw,
++ adapter->hw.mac.addr,
++ adapter->hw.mac.rar_entry_count - 1);
++ }
++
++ return 0;
++}
++
++/* Need to wait a few seconds after link up to get diagnostic information from
++ * the phy */
++static void e1000_update_phy_info(unsigned long data)
++{
++ struct e1000_adapter *adapter = (struct e1000_adapter *) data;
++ e1000_get_phy_info(&adapter->hw);
++}
++
++/**
++ * e1000_update_stats - Update the board statistics counters
++ * @adapter: board private structure
++ **/
++void e1000_update_stats(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ struct pci_dev *pdev = adapter->pdev;
++ unsigned long irq_flags;
++ u16 phy_tmp;
++
++#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
++
++ /*
++ * Prevent stats update while adapter is being reset, or if the pci
++ * connection is down.
++ */
++ if (adapter->link_speed == 0)
++ return;
++ if (pci_channel_offline(pdev))
++ return;
++
++ spin_lock_irqsave(&adapter->stats_lock, irq_flags);
++
++ /* these counters are modified from e1000_adjust_tbi_stats,
++ * called from the interrupt context, so they must only
++ * be written while holding adapter->stats_lock
++ */
++
++ adapter->stats.crcerrs += er32(CRCERRS);
++ adapter->stats.gprc += er32(GPRC);
++ adapter->stats.gorcl += er32(GORCL);
++ adapter->stats.gorch += er32(GORCH);
++ adapter->stats.bprc += er32(BPRC);
++ adapter->stats.mprc += er32(MPRC);
++ adapter->stats.roc += er32(ROC);
++
++ if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
++ adapter->stats.prc64 += er32(PRC64);
++ adapter->stats.prc127 += er32(PRC127);
++ adapter->stats.prc255 += er32(PRC255);
++ adapter->stats.prc511 += er32(PRC511);
++ adapter->stats.prc1023 += er32(PRC1023);
++ adapter->stats.prc1522 += er32(PRC1522);
++ adapter->stats.symerrs += er32(SYMERRS);
++ adapter->stats.sec += er32(SEC);
++ }
++
++ adapter->stats.mpc += er32(MPC);
++ adapter->stats.scc += er32(SCC);
++ adapter->stats.ecol += er32(ECOL);
++ adapter->stats.mcc += er32(MCC);
++ adapter->stats.latecol += er32(LATECOL);
++ adapter->stats.dc += er32(DC);
++ adapter->stats.rlec += er32(RLEC);
++ adapter->stats.xonrxc += er32(XONRXC);
++ adapter->stats.xontxc += er32(XONTXC);
++ adapter->stats.xoffrxc += er32(XOFFRXC);
++ adapter->stats.xofftxc += er32(XOFFTXC);
++ adapter->stats.fcruc += er32(FCRUC);
++ adapter->stats.gptc += er32(GPTC);
++ adapter->stats.gotcl += er32(GOTCL);
++ adapter->stats.gotch += er32(GOTCH);
++ adapter->stats.rnbc += er32(RNBC);
++ adapter->stats.ruc += er32(RUC);
++ adapter->stats.rfc += er32(RFC);
++ adapter->stats.rjc += er32(RJC);
++ adapter->stats.torl += er32(TORL);
++ adapter->stats.torh += er32(TORH);
++ adapter->stats.totl += er32(TOTL);
++ adapter->stats.toth += er32(TOTH);
++ adapter->stats.tpr += er32(TPR);
++
++ if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
++ adapter->stats.ptc64 += er32(PTC64);
++ adapter->stats.ptc127 += er32(PTC127);
++ adapter->stats.ptc255 += er32(PTC255);
++ adapter->stats.ptc511 += er32(PTC511);
++ adapter->stats.ptc1023 += er32(PTC1023);
++ adapter->stats.ptc1522 += er32(PTC1522);
++ }
++
++ adapter->stats.mptc += er32(MPTC);
++ adapter->stats.bptc += er32(BPTC);
++
++ /* used for adaptive IFS */
++
++ hw->mac.tx_packet_delta = er32(TPT);
++ adapter->stats.tpt += hw->mac.tx_packet_delta;
++ hw->mac.collision_delta = er32(COLC);
++ adapter->stats.colc += hw->mac.collision_delta;
++
++ adapter->stats.algnerrc += er32(ALGNERRC);
++ adapter->stats.rxerrc += er32(RXERRC);
++ adapter->stats.tncrs += er32(TNCRS);
++ adapter->stats.cexterr += er32(CEXTERR);
++ adapter->stats.tsctc += er32(TSCTC);
++ adapter->stats.tsctfc += er32(TSCTFC);
++
++ adapter->stats.iac += er32(IAC);
++
++ if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) {
++ adapter->stats.icrxoc += er32(ICRXOC);
++ adapter->stats.icrxptc += er32(ICRXPTC);
++ adapter->stats.icrxatc += er32(ICRXATC);
++ adapter->stats.ictxptc += er32(ICTXPTC);
++ adapter->stats.ictxatc += er32(ICTXATC);
++ adapter->stats.ictxqec += er32(ICTXQEC);
++ adapter->stats.ictxqmtc += er32(ICTXQMTC);
++ adapter->stats.icrxdmtc += er32(ICRXDMTC);
++ }
++
++ /* Fill out the OS statistics structure */
++ adapter->net_stats.rx_packets = adapter->stats.gprc;
++ adapter->net_stats.tx_packets = adapter->stats.gptc;
++ adapter->net_stats.rx_bytes = adapter->stats.gorcl;
++ adapter->net_stats.tx_bytes = adapter->stats.gotcl;
++ adapter->net_stats.multicast = adapter->stats.mprc;
++ adapter->net_stats.collisions = adapter->stats.colc;
++
++ /* Rx Errors */
++
++ /* RLEC on some newer hardware can be incorrect so build
++ * our own version based on RUC and ROC */
++ adapter->net_stats.rx_errors = adapter->stats.rxerrc +
++ adapter->stats.crcerrs + adapter->stats.algnerrc +
++ adapter->stats.ruc + adapter->stats.roc +
++ adapter->stats.cexterr;
++ adapter->net_stats.rx_length_errors = adapter->stats.ruc +
++ adapter->stats.roc;
++ adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
++ adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
++ adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
++
++ /* Tx Errors */
++ adapter->net_stats.tx_errors = adapter->stats.ecol +
++ adapter->stats.latecol;
++ adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
++ adapter->net_stats.tx_window_errors = adapter->stats.latecol;
++ adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
++
++ /* Tx Dropped needs to be maintained elsewhere */
++
++ /* Phy Stats */
++ if (hw->media_type == e1000_media_type_copper) {
++ if ((adapter->link_speed == SPEED_1000) &&
++ (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
++ phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
++ adapter->phy_stats.idle_errors += phy_tmp;
++ }
++ }
++
++ /* Management Stats */
++ adapter->stats.mgptc += er32(MGTPTC);
++ adapter->stats.mgprc += er32(MGTPRC);
++ adapter->stats.mgpdc += er32(MGTPDC);
++
++ spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
++}
++
++static void e1000_print_link_info(struct e1000_adapter *adapter)
++{
++ struct net_device *netdev = adapter->netdev;
++ struct e1000_hw *hw = &adapter->hw;
++ u32 ctrl = er32(CTRL);
++
++ ndev_info(netdev,
++ "Link is Up %d Mbps %s, Flow Control: %s\n",
++ adapter->link_speed,
++ (adapter->link_duplex == FULL_DUPLEX) ?
++ "Full Duplex" : "Half Duplex",
++ ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
++ "RX/TX" :
++ ((ctrl & E1000_CTRL_RFCE) ? "RX" :
++ ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
++}
++
++/**
++ * e1000_watchdog - Timer Call-back
++ * @data: pointer to adapter cast into an unsigned long
++ **/
++static void e1000_watchdog(unsigned long data)
++{
++ struct e1000_adapter *adapter = (struct e1000_adapter *) data;
++
++ /* Do the rest outside of interrupt context */
++ schedule_work(&adapter->watchdog_task);
++
++ /* TODO: make this use queue_delayed_work() */
++}
++
++static void e1000_watchdog_task(struct work_struct *work)
++{
++ struct e1000_adapter *adapter = container_of(work,
++ struct e1000_adapter, watchdog_task);
++
++ struct net_device *netdev = adapter->netdev;
++ struct e1000_mac_info *mac = &adapter->hw.mac;
++ struct e1000_ring *tx_ring = adapter->tx_ring;
++ struct e1000_hw *hw = &adapter->hw;
++ u32 link, tctl;
++ s32 ret_val;
++ int tx_pending = 0;
++
++ if ((netif_carrier_ok(netdev)) &&
++ (er32(STATUS) & E1000_STATUS_LU))
++ goto link_up;
++
++ ret_val = mac->ops.check_for_link(hw);
++ if ((ret_val == E1000_ERR_PHY) &&
++ (adapter->hw.phy.type == e1000_phy_igp_3) &&
++ (er32(CTRL) &
++ E1000_PHY_CTRL_GBE_DISABLE)) {
++ /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
++ ndev_info(netdev,
++ "Gigabit has been disabled, downgrading speed\n");
++ }
++
++ if ((e1000_enable_tx_pkt_filtering(hw)) &&
++ (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
++ e1000_update_mng_vlan(adapter);
++
++ if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
++ !(er32(TXCW) & E1000_TXCW_ANE))
++ link = adapter->hw.mac.serdes_has_link;
++ else
++ link = er32(STATUS) & E1000_STATUS_LU;
++
++ if (link) {
++ if (!netif_carrier_ok(netdev)) {
++ bool txb2b = 1;
++ mac->ops.get_link_up_info(&adapter->hw,
++ &adapter->link_speed,
++ &adapter->link_duplex);
++ e1000_print_link_info(adapter);
++ /* tweak tx_queue_len according to speed/duplex
++ * and adjust the timeout factor */
++ netdev->tx_queue_len = adapter->tx_queue_len;
++ adapter->tx_timeout_factor = 1;
++ switch (adapter->link_speed) {
++ case SPEED_10:
++ txb2b = 0;
++ netdev->tx_queue_len = 10;
++ adapter->tx_timeout_factor = 14;
++ break;
++ case SPEED_100:
++ txb2b = 0;
++ netdev->tx_queue_len = 100;
++ /* maybe add some timeout factor ? */
++ break;
++ }
++
++ /* workaround: re-program speed mode bit after
++ * link-up event */
++ if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
++ !txb2b) {
++ u32 tarc0;
++ tarc0 = er32(TARC0);
++ tarc0 &= ~SPEED_MODE_BIT;
++ ew32(TARC0, tarc0);
++ }
++
++ /* disable TSO for pcie and 10/100 speeds, to avoid
++ * some hardware issues */
++ if (!(adapter->flags & FLAG_TSO_FORCE)) {
++ switch (adapter->link_speed) {
++ case SPEED_10:
++ case SPEED_100:
++ ndev_info(netdev,
++ "10/100 speed: disabling TSO\n");
++ netdev->features &= ~NETIF_F_TSO;
++ netdev->features &= ~NETIF_F_TSO6;
++ break;
++ case SPEED_1000:
++ netdev->features |= NETIF_F_TSO;
++ netdev->features |= NETIF_F_TSO6;
++ break;
++ default:
++ /* oops */
++ break;
++ }
++ }
++
++ /* enable transmits in the hardware, need to do this
++ * after setting TARC0 */
++ tctl = er32(TCTL);
++ tctl |= E1000_TCTL_EN;
++ ew32(TCTL, tctl);
++
++ netif_carrier_on(netdev);
++ netif_wake_queue(netdev);
++
++ if (!test_bit(__E1000_DOWN, &adapter->state))
++ mod_timer(&adapter->phy_info_timer,
++ round_jiffies(jiffies + 2 * HZ));
++ } else {
++ /* make sure the receive unit is started */
++ if (adapter->flags & FLAG_RX_NEEDS_RESTART) {
++ struct e1000_hw *hw = &adapter->hw;
++ u32 rctl = er32(RCTL);
++ ew32(RCTL, rctl |
++ E1000_RCTL_EN);
++ }
++ }
++ } else {
++ if (netif_carrier_ok(netdev)) {
++ adapter->link_speed = 0;
++ adapter->link_duplex = 0;
++ ndev_info(netdev, "Link is Down\n");
++ netif_carrier_off(netdev);
++ netif_stop_queue(netdev);
++ if (!test_bit(__E1000_DOWN, &adapter->state))
++ mod_timer(&adapter->phy_info_timer,
++ round_jiffies(jiffies + 2 * HZ));
++
++ if (adapter->flags & FLAG_RX_NEEDS_RESTART)
++ schedule_work(&adapter->reset_task);
++ }
++ }
++
++link_up:
++ e1000_update_stats(adapter);
++
++ mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
++ adapter->tpt_old = adapter->stats.tpt;
++ mac->collision_delta = adapter->stats.colc - adapter->colc_old;
++ adapter->colc_old = adapter->stats.colc;
++
++ adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
++ adapter->gorcl_old = adapter->stats.gorcl;
++ adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
++ adapter->gotcl_old = adapter->stats.gotcl;
++
++ e1000_update_adaptive(&adapter->hw);
++
++ if (!netif_carrier_ok(netdev)) {
++ tx_pending = (e1000_desc_unused(tx_ring) + 1 <
++ tx_ring->count);
++ if (tx_pending) {
++ /* We've lost link, so the controller stops DMA,
++ * but we've got queued Tx work that's never going
++ * to get done, so reset controller to flush Tx.
++ * (Do the reset outside of interrupt context). */
++ adapter->tx_timeout_count++;
++ schedule_work(&adapter->reset_task);
++ }
++ }
++
++ /* Cause software interrupt to ensure rx ring is cleaned */
++ ew32(ICS, E1000_ICS_RXDMT0);
++
++ /* Force detection of hung controller every watchdog period */
++ adapter->detect_tx_hung = 1;
++
++ /* With 82571 controllers, LAA may be overwritten due to controller
++ * reset from the other port. Set the appropriate LAA in RAR[0] */
++ if (e1000_get_laa_state_82571(hw))
++ e1000_rar_set(hw, adapter->hw.mac.addr, 0);
++
++ /* Reset the timer */
++ if (!test_bit(__E1000_DOWN, &adapter->state))
++ mod_timer(&adapter->watchdog_timer,
++ round_jiffies(jiffies + 2 * HZ));
++}
++
++#define E1000_TX_FLAGS_CSUM 0x00000001
++#define E1000_TX_FLAGS_VLAN 0x00000002
++#define E1000_TX_FLAGS_TSO 0x00000004
++#define E1000_TX_FLAGS_IPV4 0x00000008
++#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
++#define E1000_TX_FLAGS_VLAN_SHIFT 16
++
++static int e1000_tso(struct e1000_adapter *adapter,
++ struct sk_buff *skb)
++{
++ struct e1000_ring *tx_ring = adapter->tx_ring;
++ struct e1000_context_desc *context_desc;
++ struct e1000_buffer *buffer_info;
++ unsigned int i;
++ u32 cmd_length = 0;
++ u16 ipcse = 0, tucse, mss;
++ u8 ipcss, ipcso, tucss, tucso, hdr_len;
++ int err;
++
++ if (skb_is_gso(skb)) {
++ if (skb_header_cloned(skb)) {
++ err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
++ if (err)
++ return err;
++ }
++
++ hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
++ mss = skb_shinfo(skb)->gso_size;
++ if (skb->protocol == htons(ETH_P_IP)) {
++ struct iphdr *iph = ip_hdr(skb);
++ iph->tot_len = 0;
++ iph->check = 0;
++ tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
++ iph->daddr, 0,
++ IPPROTO_TCP,
++ 0);
++ cmd_length = E1000_TXD_CMD_IP;
++ ipcse = skb_transport_offset(skb) - 1;
++ } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
++ ipv6_hdr(skb)->payload_len = 0;
++ tcp_hdr(skb)->check =
++ ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
++ &ipv6_hdr(skb)->daddr,
++ 0, IPPROTO_TCP, 0);
++ ipcse = 0;
++ }
++ ipcss = skb_network_offset(skb);
++ ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
++ tucss = skb_transport_offset(skb);
++ tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
++ tucse = 0;
++
++ cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
++ E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
++
++ i = tx_ring->next_to_use;
++ context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
++ buffer_info = &tx_ring->buffer_info[i];
++
++ context_desc->lower_setup.ip_fields.ipcss = ipcss;
++ context_desc->lower_setup.ip_fields.ipcso = ipcso;
++ context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
++ context_desc->upper_setup.tcp_fields.tucss = tucss;
++ context_desc->upper_setup.tcp_fields.tucso = tucso;
++ context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
++ context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
++ context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
++ context_desc->cmd_and_length = cpu_to_le32(cmd_length);
++
++ buffer_info->time_stamp = jiffies;
++ buffer_info->next_to_watch = i;
++
++ i++;
++ if (i == tx_ring->count)
++ i = 0;
++ tx_ring->next_to_use = i;
++
++ return 1;
++ }
++
++ return 0;
++}
++
++static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
++{
++ struct e1000_ring *tx_ring = adapter->tx_ring;
++ struct e1000_context_desc *context_desc;
++ struct e1000_buffer *buffer_info;
++ unsigned int i;
++ u8 css;
++
++ if (skb->ip_summed == CHECKSUM_PARTIAL) {
++ css = skb_transport_offset(skb);
++
++ i = tx_ring->next_to_use;
++ buffer_info = &tx_ring->buffer_info[i];
++ context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
++
++ context_desc->lower_setup.ip_config = 0;
++ context_desc->upper_setup.tcp_fields.tucss = css;
++ context_desc->upper_setup.tcp_fields.tucso =
++ css + skb->csum_offset;
++ context_desc->upper_setup.tcp_fields.tucse = 0;
++ context_desc->tcp_seg_setup.data = 0;
++ context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
++
++ buffer_info->time_stamp = jiffies;
++ buffer_info->next_to_watch = i;
++
++ i++;
++ if (i == tx_ring->count)
++ i = 0;
++ tx_ring->next_to_use = i;
++
++ return 1;
++ }
++
++ return 0;
++}
++
++#define E1000_MAX_PER_TXD 8192
++#define E1000_MAX_TXD_PWR 12
++
++static int e1000_tx_map(struct e1000_adapter *adapter,
++ struct sk_buff *skb, unsigned int first,
++ unsigned int max_per_txd, unsigned int nr_frags,
++ unsigned int mss)
++{
++ struct e1000_ring *tx_ring = adapter->tx_ring;
++ struct e1000_buffer *buffer_info;
++ unsigned int len = skb->len - skb->data_len;
++ unsigned int offset = 0, size, count = 0, i;
++ unsigned int f;
++
++ i = tx_ring->next_to_use;
++
++ while (len) {
++ buffer_info = &tx_ring->buffer_info[i];
++ size = min(len, max_per_txd);
++ /* Workaround for Controller erratum --
++ * descriptor for non-tso packet in a linear SKB that follows a
++ * tso gets written back prematurely before the data is fully
++ * DMA'd to the controller */
++ if (tx_ring->last_tx_tso && !skb_is_gso(skb)) {
++ tx_ring->last_tx_tso = 0;
++ if (!skb->data_len)
++ size -= 4;
++ }
++
++ /* Workaround for premature desc write-backs
++ * in TSO mode. Append 4-byte sentinel desc */
++ if (mss && !nr_frags && size == len && size > 8)
++ size -= 4;
++
++ buffer_info->length = size;
++ /* set time_stamp *before* dma to help avoid a possible race */
++ buffer_info->time_stamp = jiffies;
++ buffer_info->dma =
++ pci_map_single(adapter->pdev,
++ skb->data + offset,
++ size,
++ PCI_DMA_TODEVICE);
++ buffer_info->next_to_watch = i;
++
++ len -= size;
++ offset += size;
++ count++;
++ i++;
++ if (i == tx_ring->count)
++ i = 0;
++ }
++
++ for (f = 0; f < nr_frags; f++) {
++ struct skb_frag_struct *frag;
++
++ frag = &skb_shinfo(skb)->frags[f];
++ len = frag->size;
++ offset = frag->page_offset;
++
++ while (len) {
++ buffer_info = &tx_ring->buffer_info[i];
++ size = min(len, max_per_txd);
++ /* Workaround for premature desc write-backs
++ * in TSO mode. Append 4-byte sentinel desc */
++ if (mss && f == (nr_frags-1) && size == len && size > 8)
++ size -= 4;
++
++ buffer_info->length = size;
++ buffer_info->time_stamp = jiffies;
++ buffer_info->dma =
++ pci_map_page(adapter->pdev,
++ frag->page,
++ offset,
++ size,
++ PCI_DMA_TODEVICE);
++ buffer_info->next_to_watch = i;
++
++ len -= size;
++ offset += size;
++ count++;
++
++ i++;
++ if (i == tx_ring->count)
++ i = 0;
++ }
++ }
++
++ if (i == 0)
++ i = tx_ring->count - 1;
++ else
++ i--;
++
++ tx_ring->buffer_info[i].skb = skb;
++ tx_ring->buffer_info[first].next_to_watch = i;
++
++ return count;
++}
++
++static void e1000_tx_queue(struct e1000_adapter *adapter,
++ int tx_flags, int count)
++{
++ struct e1000_ring *tx_ring = adapter->tx_ring;
++ struct e1000_tx_desc *tx_desc = NULL;
++ struct e1000_buffer *buffer_info;
++ u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
++ unsigned int i;
++
++ if (tx_flags & E1000_TX_FLAGS_TSO) {
++ txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
++ E1000_TXD_CMD_TSE;
++ txd_upper |= E1000_TXD_POPTS_TXSM << 8;
++
++ if (tx_flags & E1000_TX_FLAGS_IPV4)
++ txd_upper |= E1000_TXD_POPTS_IXSM << 8;
++ }
++
++ if (tx_flags & E1000_TX_FLAGS_CSUM) {
++ txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
++ txd_upper |= E1000_TXD_POPTS_TXSM << 8;
++ }
++
++ if (tx_flags & E1000_TX_FLAGS_VLAN) {
++ txd_lower |= E1000_TXD_CMD_VLE;
++ txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
++ }
++
++ i = tx_ring->next_to_use;
++
++ while (count--) {
++ buffer_info = &tx_ring->buffer_info[i];
++ tx_desc = E1000_TX_DESC(*tx_ring, i);
++ tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
++ tx_desc->lower.data =
++ cpu_to_le32(txd_lower | buffer_info->length);
++ tx_desc->upper.data = cpu_to_le32(txd_upper);
++
++ i++;
++ if (i == tx_ring->count)
++ i = 0;
++ }
++
++ tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
++
++ /* Force memory writes to complete before letting h/w
++ * know there are new descriptors to fetch. (Only
++ * applicable for weak-ordered memory model archs,
++ * such as IA-64). */
++ wmb();
++
++ tx_ring->next_to_use = i;
++ writel(i, adapter->hw.hw_addr + tx_ring->tail);
++ /* we need this if more than one processor can write to our tail
++ * at a time, it synchronizes IO on IA64/Altix systems */
++ mmiowb();
++}
++
++#define MINIMUM_DHCP_PACKET_SIZE 282
++static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
++ struct sk_buff *skb)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ u16 length, offset;
++
++ if (vlan_tx_tag_present(skb)) {
++ if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
++ && (adapter->hw.mng_cookie.status &
++ E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
++ return 0;
++ }
++
++ if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
++ return 0;
++
++ if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
++ return 0;
++
++ {
++ const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
++ struct udphdr *udp;
++
++ if (ip->protocol != IPPROTO_UDP)
++ return 0;
++
++ udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
++ if (ntohs(udp->dest) != 67)
++ return 0;
++
++ offset = (u8 *)udp + 8 - skb->data;
++ length = skb->len - offset;
++ return e1000_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
++ }
++
++ return 0;
++}
++
++static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++
++ netif_stop_queue(netdev);
++ /* Herbert's original patch had:
++ * smp_mb__after_netif_stop_queue();
++ * but since that doesn't exist yet, just open code it. */
++ smp_mb();
++
++ /* We need to check again in a case another CPU has just
++ * made room available. */
++ if (e1000_desc_unused(adapter->tx_ring) < size)
++ return -EBUSY;
++
++ /* A reprieve! */
++ netif_start_queue(netdev);
++ ++adapter->restart_queue;
++ return 0;
++}
++
++static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++
++ if (e1000_desc_unused(adapter->tx_ring) >= size)
++ return 0;
++ return __e1000_maybe_stop_tx(netdev, size);
++}
++
++#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
++static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_ring *tx_ring = adapter->tx_ring;
++ unsigned int first;
++ unsigned int max_per_txd = E1000_MAX_PER_TXD;
++ unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
++ unsigned int tx_flags = 0;
++ unsigned int len = skb->len;
++ unsigned long irq_flags;
++ unsigned int nr_frags = 0;
++ unsigned int mss = 0;
++ int count = 0;
++ int tso;
++ unsigned int f;
++ len -= skb->data_len;
++
++ if (test_bit(__E1000_DOWN, &adapter->state)) {
++ dev_kfree_skb_any(skb);
++ return NETDEV_TX_OK;
++ }
++
++ if (skb->len <= 0) {
++ dev_kfree_skb_any(skb);
++ return NETDEV_TX_OK;
++ }
++
++ mss = skb_shinfo(skb)->gso_size;
++ /* The controller does a simple calculation to
++ * make sure there is enough room in the FIFO before
++ * initiating the DMA for each buffer. The calc is:
++ * 4 = ceil(buffer len/mss). To make sure we don't
++ * overrun the FIFO, adjust the max buffer len if mss
++ * drops. */
++ if (mss) {
++ u8 hdr_len;
++ max_per_txd = min(mss << 2, max_per_txd);
++ max_txd_pwr = fls(max_per_txd) - 1;
++
++ /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
++ * points to just header, pull a few bytes of payload from
++ * frags into skb->data */
++ hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
++ if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
++ unsigned int pull_size;
++
++ pull_size = min((unsigned int)4, skb->data_len);
++ if (!__pskb_pull_tail(skb, pull_size)) {
++ ndev_err(netdev,
++ "__pskb_pull_tail failed.\n");
++ dev_kfree_skb_any(skb);
++ return NETDEV_TX_OK;
++ }
++ len = skb->len - skb->data_len;
++ }
++ }
++
++ /* reserve a descriptor for the offload context */
++ if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
++ count++;
++ count++;
++
++ /* Controller Erratum workaround */
++ if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
++ count++;
++
++ count += TXD_USE_COUNT(len, max_txd_pwr);
++
++ nr_frags = skb_shinfo(skb)->nr_frags;
++ for (f = 0; f < nr_frags; f++)
++ count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
++ max_txd_pwr);
++
++ if (adapter->hw.mac.tx_pkt_filtering)
++ e1000_transfer_dhcp_info(adapter, skb);
++
++ if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
++ /* Collision - tell upper layer to requeue */
++ return NETDEV_TX_LOCKED;
++
++ /* need: count + 2 desc gap to keep tail from touching
++ * head, otherwise try next time */
++ if (e1000_maybe_stop_tx(netdev, count + 2)) {
++ spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
++ return NETDEV_TX_BUSY;
++ }
++
++ if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
++ tx_flags |= E1000_TX_FLAGS_VLAN;
++ tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
++ }
++
++ first = tx_ring->next_to_use;
++
++ tso = e1000_tso(adapter, skb);
++ if (tso < 0) {
++ dev_kfree_skb_any(skb);
++ spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
++ return NETDEV_TX_OK;
++ }
++
++ if (tso) {
++ tx_ring->last_tx_tso = 1;
++ tx_flags |= E1000_TX_FLAGS_TSO;
++ } else if (e1000_tx_csum(adapter, skb)) {
++ tx_flags |= E1000_TX_FLAGS_CSUM;
++ }
++
++ /* Old method was to assume IPv4 packet by default if TSO was enabled.
++ * 82571 hardware supports TSO capabilities for IPv6 as well...
++ * no longer assume, we must. */
++ if (skb->protocol == htons(ETH_P_IP))
++ tx_flags |= E1000_TX_FLAGS_IPV4;
++
++ e1000_tx_queue(adapter, tx_flags,
++ e1000_tx_map(adapter, skb, first,
++ max_per_txd, nr_frags, mss));
++
++ netdev->trans_start = jiffies;
++
++ /* Make sure there is space in the ring for the next send. */
++ e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
++
++ spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
++ return NETDEV_TX_OK;
++}
++
++/**
++ * e1000_tx_timeout - Respond to a Tx Hang
++ * @netdev: network interface device structure
++ **/
++static void e1000_tx_timeout(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++
++ /* Do the reset outside of interrupt context */
++ adapter->tx_timeout_count++;
++ schedule_work(&adapter->reset_task);
++}
++
++static void e1000_reset_task(struct work_struct *work)
++{
++ struct e1000_adapter *adapter;
++ adapter = container_of(work, struct e1000_adapter, reset_task);
++
++ e1000_reinit_locked(adapter);
++}
++
++/**
++ * e1000_get_stats - Get System Network Statistics
++ * @netdev: network interface device structure
++ *
++ * Returns the address of the device statistics structure.
++ * The statistics are actually updated from the timer callback.
++ **/
++static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++
++ /* only return the current stats */
++ return &adapter->net_stats;
++}
++
++/**
++ * e1000_change_mtu - Change the Maximum Transfer Unit
++ * @netdev: network interface device structure
++ * @new_mtu: new value for maximum frame size
++ *
++ * Returns 0 on success, negative on failure
++ **/
++static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
++
++ if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
++ (max_frame > MAX_JUMBO_FRAME_SIZE)) {
++ ndev_err(netdev, "Invalid MTU setting\n");
++ return -EINVAL;
++ }
++
++ /* Jumbo frame size limits */
++ if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
++ if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
++ ndev_err(netdev, "Jumbo Frames not supported.\n");
++ return -EINVAL;
++ }
++ if (adapter->hw.phy.type == e1000_phy_ife) {
++ ndev_err(netdev, "Jumbo Frames not supported.\n");
++ return -EINVAL;
++ }
++ }
++
++#define MAX_STD_JUMBO_FRAME_SIZE 9234
++ if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
++ ndev_err(netdev, "MTU > 9216 not supported.\n");
++ return -EINVAL;
++ }
++
++ while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
++ msleep(1);
++ /* e1000_down has a dependency on max_frame_size */
++ adapter->hw.mac.max_frame_size = max_frame;
++ if (netif_running(netdev))
++ e1000_down(adapter);
++
++ /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
++ * means we reserve 2 more, this pushes us to allocate from the next
++ * larger slab size.
++ * i.e. RXBUFFER_2048 --> size-4096 slab
++ * however with the new *_jumbo* routines, jumbo receives will use
++ * fragmented skbs */
++
++ if (max_frame <= 256)
++ adapter->rx_buffer_len = 256;
++ else if (max_frame <= 512)
++ adapter->rx_buffer_len = 512;
++ else if (max_frame <= 1024)
++ adapter->rx_buffer_len = 1024;
++ else if (max_frame <= 2048)
++ adapter->rx_buffer_len = 2048;
++ else
++ adapter->rx_buffer_len = 4096;
++
++ /* adjust allocation if LPE protects us, and we aren't using SBP */
++ if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
++ (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
++ adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
++ + ETH_FCS_LEN ;
++
++ ndev_info(netdev, "changing MTU from %d to %d\n",
++ netdev->mtu, new_mtu);
++ netdev->mtu = new_mtu;
++
++ if (netif_running(netdev))
++ e1000_up(adapter);
++ else
++ e1000_reset(adapter);
++
++ clear_bit(__E1000_RESETTING, &adapter->state);
++
++ return 0;
++}
++
++static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
++ int cmd)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct mii_ioctl_data *data = if_mii(ifr);
++ unsigned long irq_flags;
++
++ if (adapter->hw.media_type != e1000_media_type_copper)
++ return -EOPNOTSUPP;
++
++ switch (cmd) {
++ case SIOCGMIIPHY:
++ data->phy_id = adapter->hw.phy.addr;
++ break;
++ case SIOCGMIIREG:
++ if (!capable(CAP_NET_ADMIN))
++ return -EPERM;
++ spin_lock_irqsave(&adapter->stats_lock, irq_flags);
++ if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F,
++ &data->val_out)) {
++ spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
++ return -EIO;
++ }
++ spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
++ break;
++ case SIOCSMIIREG:
++ default:
++ return -EOPNOTSUPP;
++ }
++ return E1000_SUCCESS;
++}
++
++static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
++{
++ switch (cmd) {
++ case SIOCGMIIPHY:
++ case SIOCGMIIREG:
++ case SIOCSMIIREG:
++ return e1000_mii_ioctl(netdev, ifr, cmd);
++ default:
++ return -EOPNOTSUPP;
++ }
++}
++
++static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
++{
++ struct net_device *netdev = pci_get_drvdata(pdev);
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++ u32 ctrl, ctrl_ext, rctl, status;
++ u32 wufc = adapter->wol;
++ int retval = 0;
++
++ netif_device_detach(netdev);
++
++ if (netif_running(netdev)) {
++ WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
++ e1000_down(adapter);
++ e1000_free_irq(adapter);
++ }
++
++ retval = pci_save_state(pdev);
++ if (retval)
++ return retval;
++
++ status = er32(STATUS);
++ if (status & E1000_STATUS_LU)
++ wufc &= ~E1000_WUFC_LNKC;
++
++ if (wufc) {
++ e1000_setup_rctl(adapter);
++ e1000_set_multi(netdev);
++
++ /* turn on all-multi mode if wake on multicast is enabled */
++ if (wufc & E1000_WUFC_MC) {
++ rctl = er32(RCTL);
++ rctl |= E1000_RCTL_MPE;
++ ew32(RCTL, rctl);
++ }
++
++ ctrl = er32(CTRL);
++ /* advertise wake from D3Cold */
++ #define E1000_CTRL_ADVD3WUC 0x00100000
++ /* phy power management enable */
++ #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
++ ctrl |= E1000_CTRL_ADVD3WUC |
++ E1000_CTRL_EN_PHY_PWR_MGMT;
++ ew32(CTRL, ctrl);
++
++ if (adapter->hw.media_type == e1000_media_type_fiber ||
++ adapter->hw.media_type == e1000_media_type_internal_serdes) {
++ /* keep the laser running in D3 */
++ ctrl_ext = er32(CTRL_EXT);
++ ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
++ ew32(CTRL_EXT, ctrl_ext);
++ }
++
++ /* Allow time for pending master requests to run */
++ e1000_disable_pcie_master(&adapter->hw);
++
++ ew32(WUC, E1000_WUC_PME_EN);
++ ew32(WUFC, wufc);
++ pci_enable_wake(pdev, PCI_D3hot, 1);
++ pci_enable_wake(pdev, PCI_D3cold, 1);
++ } else {
++ ew32(WUC, 0);
++ ew32(WUFC, 0);
++ pci_enable_wake(pdev, PCI_D3hot, 0);
++ pci_enable_wake(pdev, PCI_D3cold, 0);
++ }
++
++ e1000_release_manageability(adapter);
++
++ /* make sure adapter isn't asleep if manageability is enabled */
++ if (adapter->flags & FLAG_MNG_PT_ENABLED) {
++ pci_enable_wake(pdev, PCI_D3hot, 1);
++ pci_enable_wake(pdev, PCI_D3cold, 1);
++ }
++
++ if (adapter->hw.phy.type == e1000_phy_igp_3)
++ e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
++
++ /* Release control of h/w to f/w. If f/w is AMT enabled, this
++ * would have already happened in close and is redundant. */
++ e1000_release_hw_control(adapter);
++
++ pci_disable_device(pdev);
++
++ pci_set_power_state(pdev, pci_choose_state(pdev, state));
++
++ return 0;
++}
++
++#ifdef CONFIG_PM
++static int e1000_resume(struct pci_dev *pdev)
++{
++ struct net_device *netdev = pci_get_drvdata(pdev);
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++ u32 err;
++
++ pci_set_power_state(pdev, PCI_D0);
++ pci_restore_state(pdev);
++ err = pci_enable_device(pdev);
++ if (err) {
++ dev_err(&pdev->dev,
++ "Cannot enable PCI device from suspend\n");
++ return err;
++ }
++
++ pci_set_master(pdev);
++
++ pci_enable_wake(pdev, PCI_D3hot, 0);
++ pci_enable_wake(pdev, PCI_D3cold, 0);
++
++ if (netif_running(netdev)) {
++ err = e1000_request_irq(adapter);
++ if (err)
++ return err;
++ }
++
++ e1000_power_up_phy(adapter);
++ e1000_reset(adapter);
++ ew32(WUS, ~0);
++
++ e1000_init_manageability(adapter);
++
++ if (netif_running(netdev))
++ e1000_up(adapter);
++
++ netif_device_attach(netdev);
++
++ /* If the controller has AMT, do not set DRV_LOAD until the interface
++ * is up. For all other cases, let the f/w know that the h/w is now
++ * under the control of the driver. */
++ if (!(adapter->flags & FLAG_HAS_AMT) || !e1000_check_mng_mode(&adapter->hw))
++ e1000_get_hw_control(adapter);
++
++ return 0;
++}
++#endif
++
++static void e1000_shutdown(struct pci_dev *pdev)
++{
++ e1000_suspend(pdev, PMSG_SUSPEND);
++}
++
++#ifdef CONFIG_NET_POLL_CONTROLLER
++/*
++ * Polling 'interrupt' - used by things like netconsole to send skbs
++ * without having to re-enable interrupts. It's not called while
++ * the interrupt routine is executing.
++ */
++static void e1000_netpoll(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++
++ disable_irq(adapter->pdev->irq);
++ e1000_intr(adapter->pdev->irq, netdev);
++
++ e1000_clean_tx_irq(adapter);
++
++ enable_irq(adapter->pdev->irq);
++}
++#endif
++
++/**
++ * e1000_io_error_detected - called when PCI error is detected
++ * @pdev: Pointer to PCI device
++ * @state: The current pci connection state
++ *
++ * This function is called after a PCI bus error affecting
++ * this device has been detected.
++ */
++static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
++ pci_channel_state_t state)
++{
++ struct net_device *netdev = pci_get_drvdata(pdev);
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++
++ netif_device_detach(netdev);
++
++ if (netif_running(netdev))
++ e1000_down(adapter);
++ pci_disable_device(pdev);
++
++ /* Request a slot slot reset. */
++ return PCI_ERS_RESULT_NEED_RESET;
++}
++
++/**
++ * e1000_io_slot_reset - called after the pci bus has been reset.
++ * @pdev: Pointer to PCI device
++ *
++ * Restart the card from scratch, as if from a cold-boot. Implementation
++ * resembles the first-half of the e1000_resume routine.
++ */
++static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
++{
++ struct net_device *netdev = pci_get_drvdata(pdev);
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++ struct e1000_hw *hw = &adapter->hw;
++
++ if (pci_enable_device(pdev)) {
++ dev_err(&pdev->dev,
++ "Cannot re-enable PCI device after reset.\n");
++ return PCI_ERS_RESULT_DISCONNECT;
++ }
++ pci_set_master(pdev);
++
++ pci_enable_wake(pdev, PCI_D3hot, 0);
++ pci_enable_wake(pdev, PCI_D3cold, 0);
++
++ e1000_reset(adapter);
++ ew32(WUS, ~0);
++
++ return PCI_ERS_RESULT_RECOVERED;
++}
++
++/**
++ * e1000_io_resume - called when traffic can start flowing again.
++ * @pdev: Pointer to PCI device
++ *
++ * This callback is called when the error recovery driver tells us that
++ * its OK to resume normal operation. Implementation resembles the
++ * second-half of the e1000_resume routine.
++ */
++static void e1000_io_resume(struct pci_dev *pdev)
++{
++ struct net_device *netdev = pci_get_drvdata(pdev);
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++
++ e1000_init_manageability(adapter);
++
++ if (netif_running(netdev)) {
++ if (e1000_up(adapter)) {
++ dev_err(&pdev->dev,
++ "can't bring device back up after reset\n");
++ return;
++ }
++ }
++
++ netif_device_attach(netdev);
++
++ /* If the controller has AMT, do not set DRV_LOAD until the interface
++ * is up. For all other cases, let the f/w know that the h/w is now
++ * under the control of the driver. */
++ if (!(adapter->flags & FLAG_HAS_AMT) ||
++ !e1000_check_mng_mode(&adapter->hw))
++ e1000_get_hw_control(adapter);
++
++}
++
++static void e1000_print_device_info(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ struct net_device *netdev = adapter->netdev;
++
++ /* print bus type/speed/width info */
++ ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
++ "%02x:%02x:%02x:%02x:%02x:%02x\n",
++ /* bus width */
++ ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
++ "Width x1"),
++ /* MAC address */
++ netdev->dev_addr[0], netdev->dev_addr[1],
++ netdev->dev_addr[2], netdev->dev_addr[3],
++ netdev->dev_addr[4], netdev->dev_addr[5]);
++ ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
++ (hw->phy.type == e1000_phy_ife)
++ ? "10/100" : "1000");
++}
++
++/**
++ * e1000_probe - Device Initialization Routine
++ * @pdev: PCI device information struct
++ * @ent: entry in e1000_pci_tbl
++ *
++ * Returns 0 on success, negative on failure
++ *
++ * e1000_probe initializes an adapter identified by a pci_dev structure.
++ * The OS initialization, configuring of the adapter private structure,
++ * and a hardware reset occur.
++ **/
++static int __devinit e1000_probe(struct pci_dev *pdev,
++ const struct pci_device_id *ent)
++{
++ struct net_device *netdev;
++ struct e1000_adapter *adapter;
++ struct e1000_hw *hw;
++ const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
++ unsigned long mmio_start, mmio_len;
++ unsigned long flash_start, flash_len;
++
++ static int cards_found;
++ int i, err, pci_using_dac;
++ u16 eeprom_data = 0;
++ u16 eeprom_apme_mask = E1000_EEPROM_APME;
++
++ err = pci_enable_device(pdev);
++ if (err)
++ return err;
++
++ pci_using_dac = 0;
++ err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
++ if (!err) {
++ err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
++ if (!err)
++ pci_using_dac = 1;
++ } else {
++ err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
++ if (err) {
++ err = pci_set_consistent_dma_mask(pdev,
++ DMA_32BIT_MASK);
++ if (err) {
++ dev_err(&pdev->dev, "No usable DMA "
++ "configuration, aborting\n");
++ goto err_dma;
++ }
++ }
++ }
++
++ err = pci_request_regions(pdev, e1000_driver_name);
++ if (err)
++ goto err_pci_reg;
++
++ pci_set_master(pdev);
++
++ err = -ENOMEM;
++ netdev = alloc_etherdev(sizeof(struct e1000_adapter));
++ if (!netdev)
++ goto err_alloc_etherdev;
++
++ SET_MODULE_OWNER(netdev);
++ SET_NETDEV_DEV(netdev, &pdev->dev);
++
++ pci_set_drvdata(pdev, netdev);
++ adapter = netdev_priv(netdev);
++ hw = &adapter->hw;
++ adapter->netdev = netdev;
++ adapter->pdev = pdev;
++ adapter->ei = ei;
++ adapter->pba = ei->pba;
++ adapter->flags = ei->flags;
++ adapter->hw.adapter = adapter;
++ adapter->hw.mac.type = ei->mac;
++ adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
++
++ mmio_start = pci_resource_start(pdev, 0);
++ mmio_len = pci_resource_len(pdev, 0);
++
++ err = -EIO;
++ adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
++ if (!adapter->hw.hw_addr)
++ goto err_ioremap;
++
++ if ((adapter->flags & FLAG_HAS_FLASH) &&
++ (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
++ flash_start = pci_resource_start(pdev, 1);
++ flash_len = pci_resource_len(pdev, 1);
++ adapter->hw.flash_address = ioremap(flash_start, flash_len);
++ if (!adapter->hw.flash_address)
++ goto err_flashmap;
++ }
++
++ /* construct the net_device struct */
++ netdev->open = &e1000_open;
++ netdev->stop = &e1000_close;
++ netdev->hard_start_xmit = &e1000_xmit_frame;
++ netdev->get_stats = &e1000_get_stats;
++ netdev->set_multicast_list = &e1000_set_multi;
++ netdev->set_mac_address = &e1000_set_mac;
++ netdev->change_mtu = &e1000_change_mtu;
++ netdev->do_ioctl = &e1000_ioctl;
++ e1000_set_ethtool_ops(netdev);
++ netdev->tx_timeout = &e1000_tx_timeout;
++ netdev->watchdog_timeo = 5 * HZ;
++ netdev->poll = &e1000_clean;
++ netdev->weight = 64;
++ netdev->vlan_rx_register = e1000_vlan_rx_register;
++ netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
++ netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
++#ifdef CONFIG_NET_POLL_CONTROLLER
++ netdev->poll_controller = e1000_netpoll;
++#endif
++ strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
++
++ netdev->mem_start = mmio_start;
++ netdev->mem_end = mmio_start + mmio_len;
++
++ adapter->bd_number = cards_found++;
++
++ /* setup adapter struct */
++ err = e1000_sw_init(adapter);
++ if (err)
++ goto err_sw_init;
++
++ err = -EIO;
++
++ memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
++ memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
++ memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
++
++ err = ei->get_invariants(adapter);
++ if (err)
++ goto err_hw_init;
++
++ hw->mac.ops.get_bus_info(&adapter->hw);
++
++ adapter->hw.phy.wait_for_link = 0;
++
++ /* Copper options */
++ if (adapter->hw.media_type == e1000_media_type_copper) {
++ adapter->hw.phy.mdix = AUTO_ALL_MODES;
++ adapter->hw.phy.disable_polarity_correction = 0;
++ adapter->hw.phy.ms_type = e1000_ms_hw_default;
++ }
++
++ if (e1000_check_reset_block(&adapter->hw))
++ ndev_info(netdev,
++ "PHY reset is blocked due to SOL/IDER session.\n");
++
++ netdev->features = NETIF_F_SG |
++ NETIF_F_HW_CSUM |
++ NETIF_F_HW_VLAN_TX |
++ NETIF_F_HW_VLAN_RX;
++
++ if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
++ netdev->features |= NETIF_F_HW_VLAN_FILTER;
++
++ netdev->features |= NETIF_F_TSO;
++ netdev->features |= NETIF_F_TSO6;
++
++ if (pci_using_dac)
++ netdev->features |= NETIF_F_HIGHDMA;
++
++ /* We should not be using LLTX anymore, but we are still TX faster with
++ * it. */
++ netdev->features |= NETIF_F_LLTX;
++
++ if (e1000_enable_mng_pass_thru(&adapter->hw))
++ adapter->flags |= FLAG_MNG_PT_ENABLED;
++
++ /* before reading the NVM, reset the controller to
++ * put the device in a known good starting state */
++ adapter->hw.mac.ops.reset_hw(&adapter->hw);
++
++ /*
++ * systems with ASPM and others may see the checksum fail on the first
++ * attempt. Let's give it a few tries
++ */
++ for (i = 0;; i++) {
++ if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
++ break;
++ if (i == 2) {
++ ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
++ err = -EIO;
++ goto err_eeprom;
++ }
++ }
++
++ /* copy the MAC address out of the NVM */
++ if (e1000_read_mac_addr(&adapter->hw))
++ ndev_err(netdev, "NVM Read Error while reading MAC address\n");
++
++ memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
++ memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
++
++ if (!is_valid_ether_addr(netdev->perm_addr)) {
++ ndev_err(netdev, "Invalid MAC Address: "
++ "%02x:%02x:%02x:%02x:%02x:%02x\n",
++ netdev->perm_addr[0], netdev->perm_addr[1],
++ netdev->perm_addr[2], netdev->perm_addr[3],
++ netdev->perm_addr[4], netdev->perm_addr[5]);
++ err = -EIO;
++ goto err_eeprom;
++ }
++
++ init_timer(&adapter->watchdog_timer);
++ adapter->watchdog_timer.function = &e1000_watchdog;
++ adapter->watchdog_timer.data = (unsigned long) adapter;
++
++ init_timer(&adapter->phy_info_timer);
++ adapter->phy_info_timer.function = &e1000_update_phy_info;
++ adapter->phy_info_timer.data = (unsigned long) adapter;
++
++ INIT_WORK(&adapter->reset_task, e1000_reset_task);
++ INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
++
++ e1000_check_options(adapter);
++
++ /* Initialize link parameters. User can change them with ethtool */
++ adapter->hw.mac.autoneg = 1;
++ adapter->hw.mac.original_fc = e1000_fc_default;
++ adapter->hw.mac.fc = e1000_fc_default;
++ adapter->hw.phy.autoneg_advertised = 0x2f;
++
++ /* ring size defaults */
++ adapter->rx_ring->count = 256;
++ adapter->tx_ring->count = 256;
++
++ /*
++ * Initial Wake on LAN setting - If APM wake is enabled in
++ * the EEPROM, enable the ACPI Magic Packet filter
++ */
++ if (adapter->flags & FLAG_APME_IN_WUC) {
++ /* APME bit in EEPROM is mapped to WUC.APME */
++ eeprom_data = er32(WUC);
++ eeprom_apme_mask = E1000_WUC_APME;
++ } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
++ if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
++ (adapter->hw.bus.func == 1))
++ e1000_read_nvm(&adapter->hw,
++ NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
++ else
++ e1000_read_nvm(&adapter->hw,
++ NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
++ }
++
++ /* fetch WoL from EEPROM */
++ if (eeprom_data & eeprom_apme_mask)
++ adapter->eeprom_wol |= E1000_WUFC_MAG;
++
++ /*
++ * now that we have the eeprom settings, apply the special cases
++ * where the eeprom may be wrong or the board simply won't support
++ * wake on lan on a particular port
++ */
++ if (!(adapter->flags & FLAG_HAS_WOL))
++ adapter->eeprom_wol = 0;
++
++ /* initialize the wol settings based on the eeprom settings */
++ adapter->wol = adapter->eeprom_wol;
++
++ /* reset the hardware with the new settings */
++ e1000_reset(adapter);
++
++ /* If the controller has AMT, do not set DRV_LOAD until the interface
++ * is up. For all other cases, let the f/w know that the h/w is now
++ * under the control of the driver. */
++ if (!(adapter->flags & FLAG_HAS_AMT) ||
++ !e1000_check_mng_mode(&adapter->hw))
++ e1000_get_hw_control(adapter);
++
++ /* tell the stack to leave us alone until e1000_open() is called */
++ netif_carrier_off(netdev);
++ netif_stop_queue(netdev);
++ netif_poll_disable(netdev);
++
++ strcpy(netdev->name, "eth%d");
++ err = register_netdev(netdev);
++ if (err)
++ goto err_register;
++
++ e1000_print_device_info(adapter);
++
++ return 0;
++
++err_register:
++err_hw_init:
++ e1000_release_hw_control(adapter);
++err_eeprom:
++ if (!e1000_check_reset_block(&adapter->hw))
++ e1000_phy_hw_reset(&adapter->hw);
++
++ if (adapter->hw.flash_address)
++ iounmap(adapter->hw.flash_address);
++
++err_flashmap:
++ kfree(adapter->tx_ring);
++ kfree(adapter->rx_ring);
++err_sw_init:
++ iounmap(adapter->hw.hw_addr);
++err_ioremap:
++ free_netdev(netdev);
++err_alloc_etherdev:
++ pci_release_regions(pdev);
++err_pci_reg:
++err_dma:
++ pci_disable_device(pdev);
++ return err;
++}
++
++/**
++ * e1000_remove - Device Removal Routine
++ * @pdev: PCI device information struct
++ *
++ * e1000_remove is called by the PCI subsystem to alert the driver
++ * that it should release a PCI device. The could be caused by a
++ * Hot-Plug event, or because the driver is going to be removed from
++ * memory.
++ **/
++static void __devexit e1000_remove(struct pci_dev *pdev)
++{
++ struct net_device *netdev = pci_get_drvdata(pdev);
++ struct e1000_adapter *adapter = netdev_priv(netdev);
++
++ /* flush_scheduled work may reschedule our watchdog task, so
++ * explicitly disable watchdog tasks from being rescheduled */
++ set_bit(__E1000_DOWN, &adapter->state);
++ del_timer_sync(&adapter->watchdog_timer);
++ del_timer_sync(&adapter->phy_info_timer);
++
++ flush_scheduled_work();
++
++ e1000_release_manageability(adapter);
++
++ /* Release control of h/w to f/w. If f/w is AMT enabled, this
++ * would have already happened in close and is redundant. */
++ e1000_release_hw_control(adapter);
++
++ unregister_netdev(netdev);
++
++ if (!e1000_check_reset_block(&adapter->hw))
++ e1000_phy_hw_reset(&adapter->hw);
++
++ kfree(adapter->tx_ring);
++ kfree(adapter->rx_ring);
++
++ iounmap(adapter->hw.hw_addr);
++ if (adapter->hw.flash_address)
++ iounmap(adapter->hw.flash_address);
++ pci_release_regions(pdev);
++
++ free_netdev(netdev);
++
++ pci_disable_device(pdev);
++}
++
++/* PCI Error Recovery (ERS) */
++static struct pci_error_handlers e1000_err_handler = {
++ .error_detected = e1000_io_error_detected,
++ .slot_reset = e1000_io_slot_reset,
++ .resume = e1000_io_resume,
++};
++
++static struct pci_device_id e1000e_pci_tbl[] = {
++ /*
++ * Support for 82571/2/3, es2lan and ich8 will be phased in
++ * stepwise.
++
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
++ board_80003es2lan },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
++ board_80003es2lan },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
++ board_80003es2lan },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
++ board_80003es2lan },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
++ */
++
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
++ { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
++
++ { } /* terminate list */
++};
++MODULE_DEVICE_TABLE(pci, e1000e_pci_tbl);
++
++/* PCI Device API Driver */
++static struct pci_driver e1000_driver = {
++ .name = e1000_driver_name,
++ .id_table = e1000e_pci_tbl,
++ .probe = e1000_probe,
++ .remove = __devexit_p(e1000_remove),
++#ifdef CONFIG_PM
++ /* Power Managment Hooks */
++ .suspend = e1000_suspend,
++ .resume = e1000_resume,
++#endif
++ .shutdown = e1000_shutdown,
++ .err_handler = &e1000_err_handler
++};
++
++/**
++ * e1000_init_module - Driver Registration Routine
++ *
++ * e1000_init_module is the first routine called when the driver is
++ * loaded. All it does is register with the PCI subsystem.
++ **/
++static int __init e1000e_init_module(void)
++{
++ int ret;
++ printk(KERN_INFO "Intel(R) PRO/1000 Network Driver - %s\n",
++ e1000_driver_version);
++ printk(KERN_INFO "Copyright (c) 1999-2007 Intel Corporation.\n");
++ ret = pci_register_driver(&e1000_driver);
++
++ return ret;
++}
++module_init(e1000e_init_module);
++
++/**
++ * e1000_exit_module - Driver Exit Cleanup Routine
++ *
++ * e1000_exit_module is called just before the driver is removed
++ * from memory.
++ **/
++static void __exit e1000e_exit_module(void)
++{
++ pci_unregister_driver(&e1000_driver);
++}
++module_exit(e1000e_exit_module);
++
++
++MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
++MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
++MODULE_LICENSE("GPL");
++MODULE_VERSION(DRV_VERSION);
++
++/* e1000_main.c */
+diff --git a/drivers/net/e1000e/param.c b/drivers/net/e1000e/param.c
+new file mode 100644
+index 0000000..9a70d22
+--- /dev/null
++++ b/drivers/net/e1000e/param.c
+@@ -0,0 +1,382 @@
++/*******************************************************************************
++
++ Intel PRO/1000 Linux driver
++ Copyright(c) 1999 - 2007 Intel Corporation.
++
++ This program is free software; you can redistribute it and/or modify it
++ under the terms and conditions of the GNU General Public License,
++ version 2, as published by the Free Software Foundation.
++
++ This program is distributed in the hope it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
++ more details.
++
++ You should have received a copy of the GNU General Public License along with
++ this program; if not, write to the Free Software Foundation, Inc.,
++ 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++ The full GNU General Public License is included in this distribution in
++ the file called "COPYING".
++
++ Contact Information:
++ Linux NICS <linux.nics@intel.com>
++ e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
++ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++#include <linux/netdevice.h>
++
++#include "e1000.h"
++
++/* This is the only thing that needs to be changed to adjust the
++ * maximum number of ports that the driver can manage.
++ */
++
++#define E1000_MAX_NIC 32
++
++#define OPTION_UNSET -1
++#define OPTION_DISABLED 0
++#define OPTION_ENABLED 1
++
++#define COPYBREAK_DEFAULT 256
++unsigned int copybreak = COPYBREAK_DEFAULT;
++module_param(copybreak, uint, 0644);
++MODULE_PARM_DESC(copybreak,
++ "Maximum size of packet that is copied to a new buffer on receive");
++
++/* All parameters are treated the same, as an integer array of values.
++ * This macro just reduces the need to repeat the same declaration code
++ * over and over (plus this helps to avoid typo bugs).
++ */
++
++#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
++#define E1000_PARAM(X, desc) \
++ static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \
++ static int num_##X; \
++ module_param_array_named(X, X, int, &num_##X, 0); \
++ MODULE_PARM_DESC(X, desc);
++
++
++/* Transmit Interrupt Delay in units of 1.024 microseconds
++ * Tx interrupt delay needs to typically be set to something non zero
++ *
++ * Valid Range: 0-65535
++ */
++E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
++#define DEFAULT_TIDV 8
++#define MAX_TXDELAY 0xFFFF
++#define MIN_TXDELAY 0
++
++/* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
++ *
++ * Valid Range: 0-65535
++ */
++E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
++#define DEFAULT_TADV 32
++#define MAX_TXABSDELAY 0xFFFF
++#define MIN_TXABSDELAY 0
++
++/* Receive Interrupt Delay in units of 1.024 microseconds
++ * hardware will likely hang if you set this to anything but zero.
++ *
++ * Valid Range: 0-65535
++ */
++E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
++#define DEFAULT_RDTR 0
++#define MAX_RXDELAY 0xFFFF
++#define MIN_RXDELAY 0
++
++/* Receive Absolute Interrupt Delay in units of 1.024 microseconds
++ *
++ * Valid Range: 0-65535
++ */
++E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
++#define DEFAULT_RADV 8
++#define MAX_RXABSDELAY 0xFFFF
++#define MIN_RXABSDELAY 0
++
++/* Interrupt Throttle Rate (interrupts/sec)
++ *
++ * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
++ */
++E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
++#define DEFAULT_ITR 3
++#define MAX_ITR 100000
++#define MIN_ITR 100
++
++/* Enable Smart Power Down of the PHY
++ *
++ * Valid Range: 0, 1
++ *
++ * Default Value: 0 (disabled)
++ */
++E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
++
++/* Enable Kumeran Lock Loss workaround
++ *
++ * Valid Range: 0, 1
++ *
++ * Default Value: 1 (enabled)
++ */
++E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");
++
++struct e1000_option {
++ enum { enable_option, range_option, list_option } type;
++ char *name;
++ char *err;
++ int def;
++ union {
++ struct { /* range_option info */
++ int min;
++ int max;
++ } r;
++ struct { /* list_option info */
++ int nr;
++ struct e1000_opt_list { int i; char *str; } *p;
++ } l;
++ } arg;
++};
++
++static int __devinit e1000_validate_option(int *value,
++ struct e1000_option *opt,
++ struct e1000_adapter *adapter)
++{
++ if (*value == OPTION_UNSET) {
++ *value = opt->def;
++ return 0;
++ }
++
++ switch (opt->type) {
++ case enable_option:
++ switch (*value) {
++ case OPTION_ENABLED:
++ ndev_info(adapter->netdev, "%s Enabled\n", opt->name);
++ return 0;
++ case OPTION_DISABLED:
++ ndev_info(adapter->netdev, "%s Disabled\n", opt->name);
++ return 0;
++ }
++ break;
++ case range_option:
++ if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
++ ndev_info(adapter->netdev,
++ "%s set to %i\n", opt->name, *value);
++ return 0;
++ }
++ break;
++ case list_option: {
++ int i;
++ struct e1000_opt_list *ent;
++
++ for (i = 0; i < opt->arg.l.nr; i++) {
++ ent = &opt->arg.l.p[i];
++ if (*value == ent->i) {
++ if (ent->str[0] != '\0')
++ ndev_info(adapter->netdev, "%s\n",
++ ent->str);
++ return 0;
++ }
++ }
++ }
++ break;
++ default:
++ BUG();
++ }
++
++ ndev_info(adapter->netdev, "Invalid %s value specified (%i) %s\n",
++ opt->name, *value, opt->err);
++ *value = opt->def;
++ return -1;
++}
++
++/**
++ * e1000_check_options - Range Checking for Command Line Parameters
++ * @adapter: board private structure
++ *
++ * This routine checks all command line parameters for valid user
++ * input. If an invalid value is given, or if no user specified
++ * value exists, a default value is used. The final value is stored
++ * in a variable in the adapter structure.
++ **/
++void __devinit e1000_check_options(struct e1000_adapter *adapter)
++{
++ struct e1000_hw *hw = &adapter->hw;
++ struct net_device *netdev = adapter->netdev;
++ int bd = adapter->bd_number;
++
++ if (bd >= E1000_MAX_NIC) {
++ ndev_notice(netdev,
++ "Warning: no configuration for board #%i\n", bd);
++ ndev_notice(netdev, "Using defaults for all values\n");
++ }
++
++ { /* Transmit Interrupt Delay */
++ struct e1000_option opt = {
++ .type = range_option,
++ .name = "Transmit Interrupt Delay",
++ .err = "using default of "
++ __MODULE_STRING(DEFAULT_TIDV),
++ .def = DEFAULT_TIDV,
++ .arg = { .r = { .min = MIN_TXDELAY,
++ .max = MAX_TXDELAY } }
++ };
++
++ if (num_TxIntDelay > bd) {
++ adapter->tx_int_delay = TxIntDelay[bd];
++ e1000_validate_option(&adapter->tx_int_delay, &opt,
++ adapter);
++ } else {
++ adapter->tx_int_delay = opt.def;
++ }
++ }
++ { /* Transmit Absolute Interrupt Delay */
++ struct e1000_option opt = {
++ .type = range_option,
++ .name = "Transmit Absolute Interrupt Delay",
++ .err = "using default of "
++ __MODULE_STRING(DEFAULT_TADV),
++ .def = DEFAULT_TADV,
++ .arg = { .r = { .min = MIN_TXABSDELAY,
++ .max = MAX_TXABSDELAY } }
++ };
++
++ if (num_TxAbsIntDelay > bd) {
++ adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
++ e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
++ adapter);
++ } else {
++ adapter->tx_abs_int_delay = opt.def;
++ }
++ }
++ { /* Receive Interrupt Delay */
++ struct e1000_option opt = {
++ .type = range_option,
++ .name = "Receive Interrupt Delay",
++ .err = "using default of "
++ __MODULE_STRING(DEFAULT_RDTR),
++ .def = DEFAULT_RDTR,
++ .arg = { .r = { .min = MIN_RXDELAY,
++ .max = MAX_RXDELAY } }
++ };
++
++ /* modify min and default if 82573 for slow ping w/a,
++ * a value greater than 8 needs to be set for RDTR */
++ if (adapter->flags & FLAG_HAS_ASPM) {
++ opt.def = 32;
++ opt.arg.r.min = 8;
++ }
++
++ if (num_RxIntDelay > bd) {
++ adapter->rx_int_delay = RxIntDelay[bd];
++ e1000_validate_option(&adapter->rx_int_delay, &opt,
++ adapter);
++ } else {
++ adapter->rx_int_delay = opt.def;
++ }
++ }
++ { /* Receive Absolute Interrupt Delay */
++ struct e1000_option opt = {
++ .type = range_option,
++ .name = "Receive Absolute Interrupt Delay",
++ .err = "using default of "
++ __MODULE_STRING(DEFAULT_RADV),
++ .def = DEFAULT_RADV,
++ .arg = { .r = { .min = MIN_RXABSDELAY,
++ .max = MAX_RXABSDELAY } }
++ };
++
++ if (num_RxAbsIntDelay > bd) {
++ adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
++ e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
++ adapter);
++ } else {
++ adapter->rx_abs_int_delay = opt.def;
++ }
++ }
++ { /* Interrupt Throttling Rate */
++ struct e1000_option opt = {
++ .type = range_option,
++ .name = "Interrupt Throttling Rate (ints/sec)",
++ .err = "using default of "
++ __MODULE_STRING(DEFAULT_ITR),
++ .def = DEFAULT_ITR,
++ .arg = { .r = { .min = MIN_ITR,
++ .max = MAX_ITR } }
++ };
++
++ if (num_InterruptThrottleRate > bd) {
++ adapter->itr = InterruptThrottleRate[bd];
++ switch (adapter->itr) {
++ case 0:
++ ndev_info(netdev, "%s turned off\n",
++ opt.name);
++ break;
++ case 1:
++ ndev_info(netdev,
++ "%s set to dynamic mode\n",
++ opt.name);
++ adapter->itr_setting = adapter->itr;
++ adapter->itr = 20000;
++ break;
++ case 3:
++ ndev_info(netdev,
++ "%s set to dynamic conservative mode\n",
++ opt.name);
++ adapter->itr_setting = adapter->itr;
++ adapter->itr = 20000;
++ break;
++ default:
++ e1000_validate_option(&adapter->itr, &opt,
++ adapter);
++ /*
++ * save the setting, because the dynamic bits
++ * change itr. clear the lower two bits
++ * because they are used as control
++ */
++ adapter->itr_setting = adapter->itr & ~3;
++ break;
++ }
++ } else {
++ adapter->itr_setting = opt.def;
++ adapter->itr = 20000;
++ }
++ }
++ { /* Smart Power Down */
++ struct e1000_option opt = {
++ .type = enable_option,
++ .name = "PHY Smart Power Down",
++ .err = "defaulting to Disabled",
++ .def = OPTION_DISABLED
++ };
++
++ if (num_SmartPowerDownEnable > bd) {
++ int spd = SmartPowerDownEnable[bd];
++ e1000_validate_option(&spd, &opt, adapter);
++ if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN)
++ && spd)
++ adapter->flags |= FLAG_SMART_POWER_DOWN;
++ }
++ }
++ { /* Kumeran Lock Loss Workaround */
++ struct e1000_option opt = {
++ .type = enable_option,
++ .name = "Kumeran Lock Loss Workaround",
++ .err = "defaulting to Enabled",
++ .def = OPTION_ENABLED
++ };
++
++ if (num_KumeranLockLoss > bd) {
++ int kmrn_lock_loss = KumeranLockLoss[bd];
++ e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
++ if (hw->mac.type == e1000_ich8lan)
++ e1000_set_kmrn_lock_loss_workaround_ich8lan(hw,
++ kmrn_lock_loss);
++ } else {
++ if (hw->mac.type == e1000_ich8lan)
++ e1000_set_kmrn_lock_loss_workaround_ich8lan(hw,
++ opt.def);
++ }
++ }
++}
+diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c
+new file mode 100644
+index 0000000..6fd55e7
+--- /dev/null
++++ b/drivers/net/e1000e/phy.c
+@@ -0,0 +1,1821 @@
++/*******************************************************************************
++
++ Intel PRO/1000 Linux driver
++ Copyright(c) 1999 - 2007 Intel Corporation.
++
++ This program is free software; you can redistribute it and/or modify it
++ under the terms and conditions of the GNU General Public License,
++ version 2, as published by the Free Software Foundation.
++
++ This program is distributed in the hope it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
++ more details.
++
++ You should have received a copy of the GNU General Public License along with
++ this program; if not, write to the Free Software Foundation, Inc.,
++ 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++ The full GNU General Public License is included in this distribution in
++ the file called "COPYING".
++
++ Contact Information:
++ Linux NICS <linux.nics@intel.com>
++ e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
++ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++#include "e1000.h"
++
++static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
++static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
++
++/* Cable length tables */
++static const u16 e1000_m88_cable_length_table[] =
++ { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
++
++static const u16 e1000_igp_2_cable_length_table[] =
++ { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
++ 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
++ 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
++ 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
++ 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
++ 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
++ 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
++ 124};
++#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
++ (sizeof(e1000_igp_2_cable_length_table) / \
++ sizeof(e1000_igp_2_cable_length_table[0]))
++
++/**
++ * e1000_check_reset_block_generic - Check if PHY reset is blocked
++ * @hw: pointer to the HW structure
++ *
++ * Read the PHY management control register and check whether a PHY reset
++ * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise
++ * return E1000_BLK_PHY_RESET (12).
++ **/
++s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
++{
++ u32 manc;
++
++ manc = er32(MANC);
++
++ return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
++ E1000_BLK_PHY_RESET : E1000_SUCCESS;
++}
++
++/**
++ * e1000_get_phy_id - Retrieve the PHY ID and revision
++ * @hw: pointer to the HW structure
++ *
++ * Reads the PHY registers and stores the PHY ID and possibly the PHY
++ * revision in the hardware structure.
++ **/
++s32 e1000_get_phy_id(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val = E1000_SUCCESS;
++ u16 phy_id;
++
++ ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
++ if (ret_val)
++ goto out;
++
++ phy->id = (u32)(phy_id << 16);
++ udelay(20);
++ ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
++ if (ret_val)
++ goto out;
++
++ phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
++ phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_phy_reset_dsp - Reset PHY DSP
++ * @hw: pointer to the HW structure
++ *
++ * Reset the digital signal processor.
++ **/
++s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
++{
++ s32 ret_val;
++
++ ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
++ if (ret_val)
++ goto out;
++
++ ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_read_phy_reg_mdic - Read MDI control register
++ * @hw: pointer to the HW structure
++ * @offset: register offset to be read
++ * @data: pointer to the read data
++ *
++ * Reads the MDI control regsiter in the PHY at offset and stores the
++ * information read to data.
++ **/
++static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ u32 i, mdic = 0;
++ s32 ret_val = E1000_SUCCESS;
++
++ if (offset > MAX_PHY_REG_ADDRESS) {
++ hw_dbg(hw, "PHY Address %d is out of range\n", offset);
++ ret_val = -E1000_ERR_PARAM;
++ goto out;
++ }
++
++ /* Set up Op-code, Phy Address, and register offset in the MDI
++ * Control register. The MAC will take care of interfacing with the
++ * PHY to retrieve the desired data.
++ */
++ mdic = ((offset << E1000_MDIC_REG_SHIFT) |
++ (phy->addr << E1000_MDIC_PHY_SHIFT) |
++ (E1000_MDIC_OP_READ));
++
++ ew32(MDIC, mdic);
++
++ /* Poll the ready bit to see if the MDI read completed */
++ for (i = 0; i < 64; i++) {
++ udelay(50);
++ mdic = er32(MDIC);
++ if (mdic & E1000_MDIC_READY)
++ break;
++ }
++ if (!(mdic & E1000_MDIC_READY)) {
++ hw_dbg(hw, "MDI Read did not complete\n");
++ ret_val = -E1000_ERR_PHY;
++ goto out;
++ }
++ if (mdic & E1000_MDIC_ERROR) {
++ hw_dbg(hw, "MDI Error\n");
++ ret_val = -E1000_ERR_PHY;
++ goto out;
++ }
++ *data = (u16) mdic;
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_write_phy_reg_mdic - Write MDI control register
++ * @hw: pointer to the HW structure
++ * @offset: register offset to write to
++ * @data: data to write to register at offset
++ *
++ * Writes data to MDI control register in the PHY at offset.
++ **/
++static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ u32 i, mdic = 0;
++ s32 ret_val = E1000_SUCCESS;
++
++ if (offset > MAX_PHY_REG_ADDRESS) {
++ hw_dbg(hw, "PHY Address %d is out of range\n", offset);
++ ret_val = -E1000_ERR_PARAM;
++ goto out;
++ }
++
++ /* Set up Op-code, Phy Address, and register offset in the MDI
++ * Control register. The MAC will take care of interfacing with the
++ * PHY to retrieve the desired data.
++ */
++ mdic = (((u32)data) |
++ (offset << E1000_MDIC_REG_SHIFT) |
++ (phy->addr << E1000_MDIC_PHY_SHIFT) |
++ (E1000_MDIC_OP_WRITE));
++
++ ew32(MDIC, mdic);
++
++ /* Poll the ready bit to see if the MDI read completed */
++ for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
++ udelay(5);
++ mdic = er32(MDIC);
++ if (mdic & E1000_MDIC_READY)
++ break;
++ }
++ if (!(mdic & E1000_MDIC_READY)) {
++ hw_dbg(hw, "MDI Write did not complete\n");
++ ret_val = -E1000_ERR_PHY;
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_read_phy_reg_m88 - Read m88 PHY register
++ * @hw: pointer to the HW structure
++ * @offset: register offset to be read
++ * @data: pointer to the read data
++ *
++ * Acquires semaphore, if necessary, then reads the PHY register at offset
++ * and storing the retrieved information in data. Release any acquired
++ * semaphores before exiting.
++ **/
++s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
++{
++ s32 ret_val;
++
++ ret_val = hw->phy.ops.acquire_phy(hw);
++ if (ret_val)
++ goto out;
++
++ ret_val = e1000_read_phy_reg_mdic(hw,
++ MAX_PHY_REG_ADDRESS & offset,
++ data);
++
++ hw->phy.ops.release_phy(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_write_phy_reg_m88 - Write m88 PHY register
++ * @hw: pointer to the HW structure
++ * @offset: register offset to write to
++ * @data: data to write at register offset
++ *
++ * Acquires semaphore, if necessary, then writes the data to PHY register
++ * at the offset. Release any acquired semaphores before exiting.
++ **/
++s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
++{
++ s32 ret_val;
++
++ ret_val = hw->phy.ops.acquire_phy(hw);
++ if (ret_val)
++ goto out;
++
++ ret_val = e1000_write_phy_reg_mdic(hw,
++ MAX_PHY_REG_ADDRESS & offset,
++ data);
++
++ hw->phy.ops.release_phy(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_read_phy_reg_igp - Read igp PHY register
++ * @hw: pointer to the HW structure
++ * @offset: register offset to be read
++ * @data: pointer to the read data
++ *
++ * Acquires semaphore, if necessary, then reads the PHY register at offset
++ * and storing the retrieved information in data. Release any acquired
++ * semaphores before exiting.
++ **/
++s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
++{
++ s32 ret_val;
++
++ ret_val = hw->phy.ops.acquire_phy(hw);
++ if (ret_val)
++ goto out;
++
++ if (offset > MAX_PHY_MULTI_PAGE_REG) {
++ ret_val = e1000_write_phy_reg_mdic(hw,
++ IGP01E1000_PHY_PAGE_SELECT,
++ (u16)offset);
++ if (ret_val) {
++ hw->phy.ops.release_phy(hw);
++ goto out;
++ }
++ }
++
++ ret_val = e1000_read_phy_reg_mdic(hw,
++ MAX_PHY_REG_ADDRESS & offset,
++ data);
++
++ hw->phy.ops.release_phy(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_write_phy_reg_igp - Write igp PHY register
++ * @hw: pointer to the HW structure
++ * @offset: register offset to write to
++ * @data: data to write at register offset
++ *
++ * Acquires semaphore, if necessary, then writes the data to PHY register
++ * at the offset. Release any acquired semaphores before exiting.
++ **/
++s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
++{
++ s32 ret_val;
++
++ ret_val = hw->phy.ops.acquire_phy(hw);
++ if (ret_val)
++ goto out;
++
++ if (offset > MAX_PHY_MULTI_PAGE_REG) {
++ ret_val = e1000_write_phy_reg_mdic(hw,
++ IGP01E1000_PHY_PAGE_SELECT,
++ (u16)offset);
++ if (ret_val) {
++ hw->phy.ops.release_phy(hw);
++ goto out;
++ }
++ }
++
++ ret_val = e1000_write_phy_reg_mdic(hw,
++ MAX_PHY_REG_ADDRESS & offset,
++ data);
++
++ hw->phy.ops.release_phy(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_read_kmrn_reg - Read kumeran register
++ * @hw: pointer to the HW structure
++ * @offset: register offset to be read
++ * @data: pointer to the read data
++ *
++ * Acquires semaphore, if necessary. Then reads the PHY register at offset
++ * using the kumeran interface. The information retrieved is stored in data.
++ * Release any acquired semaphores before exiting.
++ **/
++s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
++{
++ u32 kmrnctrlsta;
++ s32 ret_val;
++
++ ret_val = hw->phy.ops.acquire_phy(hw);
++ if (ret_val)
++ goto out;
++
++ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
++ E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
++ ew32(KMRNCTRLSTA, kmrnctrlsta);
++
++ udelay(2);
++
++ kmrnctrlsta = er32(KMRNCTRLSTA);
++ *data = (u16)kmrnctrlsta;
++
++ hw->phy.ops.release_phy(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_write_kmrn_reg - Write kumeran register
++ * @hw: pointer to the HW structure
++ * @offset: register offset to write to
++ * @data: data to write at register offset
++ *
++ * Acquires semaphore, if necessary. Then write the data to PHY register
++ * at the offset using the kumeran interface. Release any acquired semaphores
++ * before exiting.
++ **/
++s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
++{
++ u32 kmrnctrlsta;
++ s32 ret_val;
++
++ ret_val = hw->phy.ops.acquire_phy(hw);
++ if (ret_val)
++ goto out;
++
++ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
++ E1000_KMRNCTRLSTA_OFFSET) | data;
++ ew32(KMRNCTRLSTA, kmrnctrlsta);
++
++ udelay(2);
++ hw->phy.ops.release_phy(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
++ * @hw: pointer to the HW structure
++ *
++ * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
++ * and downshift values are set also.
++ **/
++s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 phy_data;
++
++ /* Enable CRS on TX. This must be set for half-duplex operation. */
++ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
++ if (ret_val)
++ goto out;
++
++ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
++
++ /* Options:
++ * MDI/MDI-X = 0 (default)
++ * 0 - Auto for all speeds
++ * 1 - MDI mode
++ * 2 - MDI-X mode
++ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
++ */
++ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
++
++ switch (phy->mdix) {
++ case 1:
++ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
++ break;
++ case 2:
++ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
++ break;
++ case 3:
++ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
++ break;
++ case 0:
++ default:
++ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
++ break;
++ }
++
++ /* Options:
++ * disable_polarity_correction = 0 (default)
++ * Automatic Correction for Reversed Cable Polarity
++ * 0 - Disabled
++ * 1 - Enabled
++ */
++ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
++ if (phy->disable_polarity_correction == 1)
++ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
++
++ ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
++ if (ret_val)
++ goto out;
++
++ if (phy->revision < 4) {
++ /* Force TX_CLK in the Extended PHY Specific Control Register
++ * to 25MHz clock.
++ */
++ ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
++ if (ret_val)
++ goto out;
++
++ phy_data |= M88E1000_EPSCR_TX_CLK_25;
++
++ if ((phy->revision == 2) &&
++ (phy->id == M88E1111_I_PHY_ID)) {
++ /* 82573L PHY - set the downshift counter to 5x. */
++ phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
++ phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
++ } else {
++ /* Configure Master and Slave downshift values */
++ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
++ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
++ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
++ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
++ }
++ ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
++ if (ret_val)
++ goto out;
++ }
++
++ /* Commit the changes. */
++ ret_val = e1000_commit_phy(hw);
++ if (ret_val) {
++ hw_dbg(hw, "Error committing the PHY changes\n");
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
++ * @hw: pointer to the HW structure
++ *
++ * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
++ * igp PHY's.
++ **/
++s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 data;
++
++ ret_val = e1000_phy_hw_reset(hw);
++ if (ret_val) {
++ hw_dbg(hw, "Error resetting the PHY.\n");
++ goto out;
++ }
++
++ /* Wait 15ms for MAC to configure PHY from NVM settings. */
++ msleep(15);
++
++ /* disable lplu d0 during driver init */
++ ret_val = e1000_set_d0_lplu_state(hw, 0);
++ if (ret_val) {
++ hw_dbg(hw, "Error Disabling LPLU D0\n");
++ goto out;
++ }
++ /* Configure mdi-mdix settings */
++ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
++ if (ret_val)
++ goto out;
++
++ data &= ~IGP01E1000_PSCR_AUTO_MDIX;
++
++ switch (phy->mdix) {
++ case 1:
++ data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
++ break;
++ case 2:
++ data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
++ break;
++ case 0:
++ default:
++ data |= IGP01E1000_PSCR_AUTO_MDIX;
++ break;
++ }
++ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
++ if (ret_val)
++ goto out;
++
++ /* set auto-master slave resolution settings */
++ if (hw->mac.autoneg) {
++ /* when autonegotiation advertisement is only 1000Mbps then we
++ * should disable SmartSpeed and enable Auto MasterSlave
++ * resolution as hardware default. */
++ if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
++ /* Disable SmartSpeed */
++ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++ &data);
++ if (ret_val)
++ goto out;
++
++ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++ data);
++ if (ret_val)
++ goto out;
++
++ /* Set auto Master/Slave resolution process */
++ ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
++ if (ret_val)
++ goto out;
++
++ data &= ~CR_1000T_MS_ENABLE;
++ ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
++ if (ret_val)
++ goto out;
++ }
++
++ ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
++ if (ret_val)
++ goto out;
++
++ /* load defaults for future use */
++ phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
++ ((data & CR_1000T_MS_VALUE) ?
++ e1000_ms_force_master :
++ e1000_ms_force_slave) :
++ e1000_ms_auto;
++
++ switch (phy->ms_type) {
++ case e1000_ms_force_master:
++ data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
++ break;
++ case e1000_ms_force_slave:
++ data |= CR_1000T_MS_ENABLE;
++ data &= ~(CR_1000T_MS_VALUE);
++ break;
++ case e1000_ms_auto:
++ data &= ~CR_1000T_MS_ENABLE;
++ default:
++ break;
++ }
++ ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
++ if (ret_val)
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
++ * @hw: pointer to the HW structure
++ *
++ * Reads the MII auto-neg advertisement register and/or the 1000T control
++ * register and if the PHY is already setup for auto-negotiation, then
++ * return successful. Otherwise, setup advertisement and flow control to
++ * the appropriate values for the wanted auto-negotiation.
++ **/
++static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 mii_autoneg_adv_reg;
++ u16 mii_1000t_ctrl_reg = 0;
++
++ phy->autoneg_advertised &= phy->autoneg_mask;
++
++ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
++ ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
++ if (ret_val)
++ goto out;
++
++ if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
++ /* Read the MII 1000Base-T Control Register (Address 9). */
++ ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
++ if (ret_val)
++ goto out;
++ }
++
++ /* Need to parse both autoneg_advertised and fc and set up
++ * the appropriate PHY registers. First we will parse for
++ * autoneg_advertised software override. Since we can advertise
++ * a plethora of combinations, we need to check each bit
++ * individually.
++ */
++
++ /* First we clear all the 10/100 mb speed bits in the Auto-Neg
++ * Advertisement Register (Address 4) and the 1000 mb speed bits in
++ * the 1000Base-T Control Register (Address 9).
++ */
++ mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
++ NWAY_AR_100TX_HD_CAPS |
++ NWAY_AR_10T_FD_CAPS |
++ NWAY_AR_10T_HD_CAPS);
++ mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
++
++ hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);
++
++ /* Do we want to advertise 10 Mb Half Duplex? */
++ if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
++ hw_dbg(hw, "Advertise 10mb Half duplex\n");
++ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
++ }
++
++ /* Do we want to advertise 10 Mb Full Duplex? */
++ if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
++ hw_dbg(hw, "Advertise 10mb Full duplex\n");
++ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
++ }
++
++ /* Do we want to advertise 100 Mb Half Duplex? */
++ if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
++ hw_dbg(hw, "Advertise 100mb Half duplex\n");
++ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
++ }
++
++ /* Do we want to advertise 100 Mb Full Duplex? */
++ if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
++ hw_dbg(hw, "Advertise 100mb Full duplex\n");
++ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
++ }
++
++ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
++ if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
++ hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");
++
++ /* Do we want to advertise 1000 Mb Full Duplex? */
++ if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
++ hw_dbg(hw, "Advertise 1000mb Full duplex\n");
++ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
++ }
++
++ /* Check for a software override of the flow control settings, and
++ * setup the PHY advertisement registers accordingly. If
++ * auto-negotiation is enabled, then software will have to set the
++ * "PAUSE" bits to the correct value in the Auto-Negotiation
++ * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
++ * negotiation.
++ *
++ * The possible values of the "fc" parameter are:
++ * 0: Flow control is completely disabled
++ * 1: Rx flow control is enabled (we can receive pause frames
++ * but not send pause frames).
++ * 2: Tx flow control is enabled (we can send pause frames
++ * but we do not support receiving pause frames).
++ * 3: Both Rx and TX flow control (symmetric) are enabled.
++ * other: No software override. The flow control configuration
++ * in the EEPROM is used.
++ */
++ switch (hw->mac.fc) {
++ case e1000_fc_none:
++ /* Flow control (RX & TX) is completely disabled by a
++ * software over-ride.
++ */
++ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
++ break;
++ case e1000_fc_rx_pause:
++ /* RX Flow control is enabled, and TX Flow control is
++ * disabled, by a software over-ride.
++ */
++ /* Since there really isn't a way to advertise that we are
++ * capable of RX Pause ONLY, we will advertise that we
++ * support both symmetric and asymmetric RX PAUSE. Later
++ * (in e1000_config_fc_after_link_up) we will disable the
++ * hw's ability to send PAUSE frames.
++ */
++ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
++ break;
++ case e1000_fc_tx_pause:
++ /* TX Flow control is enabled, and RX Flow control is
++ * disabled, by a software over-ride.
++ */
++ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
++ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
++ break;
++ case e1000_fc_full:
++ /* Flow control (both RX and TX) is enabled by a software
++ * over-ride.
++ */
++ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
++ break;
++ default:
++ hw_dbg(hw, "Flow control param set incorrectly\n");
++ ret_val = -E1000_ERR_CONFIG;
++ goto out;
++ }
++
++ ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
++ if (ret_val)
++ goto out;
++
++ hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
++
++ if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
++ ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
++ if (ret_val)
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
++ * @hw: pointer to the HW structure
++ *
++ * Performs initial bounds checking on autoneg advertisement parameter, then
++ * configure to advertise the full capability. Setup the PHY to autoneg
++ * and restart the negotiation process between the link partner. If
++ * wait_for_link, then wait for autoneg to complete before exiting.
++ **/
++static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 phy_ctrl;
++
++ /* Perform some bounds checking on the autoneg advertisement
++ * parameter.
++ */
++ phy->autoneg_advertised &= phy->autoneg_mask;
++
++ /* If autoneg_advertised is zero, we assume it was not defaulted
++ * by the calling code so we set to advertise full capability.
++ */
++ if (phy->autoneg_advertised == 0)
++ phy->autoneg_advertised = phy->autoneg_mask;
++
++ hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
++ ret_val = e1000_phy_setup_autoneg(hw);
++ if (ret_val) {
++ hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
++ goto out;
++ }
++ hw_dbg(hw, "Restarting Auto-Neg\n");
++
++ /* Restart auto-negotiation by setting the Auto Neg Enable bit and
++ * the Auto Neg Restart bit in the PHY control register.
++ */
++ ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
++ if (ret_val)
++ goto out;
++
++ phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
++ ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
++ if (ret_val)
++ goto out;
++
++ /* Does the user want to wait for Auto-Neg to complete here, or
++ * check at a later time (for example, callback routine).
++ */
++ if (phy->wait_for_link) {
++ ret_val = e1000_wait_autoneg(hw);
++ if (ret_val) {
++ hw_dbg(hw, "Error while waiting for "
++ "autoneg to complete\n");
++ goto out;
++ }
++ }
++
++ hw->mac.get_link_status = 1;
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_setup_copper_link - Configure copper link settings
++ * @hw: pointer to the HW structure
++ *
++ * Calls the appropriate function to configure the link for auto-neg or forced
++ * speed and duplex. Then we check for link, once link is established calls
++ * to configure collision distance and flow control are called. If link is
++ * not established, we return -E1000_ERR_PHY (-2).
++ **/
++s32 e1000_setup_copper_link(struct e1000_hw *hw)
++{
++ s32 ret_val;
++ bool link;
++
++ if (hw->mac.autoneg) {
++ /* Setup autoneg and flow control advertisement and perform
++ * autonegotiation. */
++ ret_val = e1000_copper_link_autoneg(hw);
++ if (ret_val)
++ goto out;
++ } else {
++ /* PHY will be set to 10H, 10F, 100H or 100F
++ * depending on user settings. */
++ hw_dbg(hw, "Forcing Speed and Duplex\n");
++ ret_val = e1000_phy_force_speed_duplex(hw);
++ if (ret_val) {
++ hw_dbg(hw, "Error Forcing Speed and Duplex\n");
++ goto out;
++ }
++ }
++
++ /* Check link status. Wait up to 100 microseconds for link to become
++ * valid.
++ */
++ ret_val = e1000_phy_has_link_generic(hw,
++ COPPER_LINK_UP_LIMIT,
++ 10,
++ &link);
++ if (ret_val)
++ goto out;
++
++ if (link) {
++ hw_dbg(hw, "Valid link established!!!\n");
++ e1000_config_collision_dist(hw);
++ ret_val = e1000_config_fc_after_link_up(hw);
++ } else {
++ hw_dbg(hw, "Unable to establish link!!!\n");
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
++ * @hw: pointer to the HW structure
++ *
++ * Calls the PHY setup function to force speed and duplex. Clears the
++ * auto-crossover to force MDI manually. Waits for link and returns
++ * successful if link up is successful, else -E1000_ERR_PHY (-2).
++ **/
++s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 phy_data;
++ bool link;
++
++ ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
++ if (ret_val)
++ goto out;
++
++ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
++
++ ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
++ if (ret_val)
++ goto out;
++
++ /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
++ * forced whenever speed and duplex are forced.
++ */
++ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
++ if (ret_val)
++ goto out;
++
++ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
++ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
++
++ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
++ if (ret_val)
++ goto out;
++
++ hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
++
++ udelay(1);
++
++ if (phy->wait_for_link) {
++ hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n");
++
++ ret_val = e1000_phy_has_link_generic(hw,
++ PHY_FORCE_LIMIT,
++ 100000,
++ &link);
++ if (ret_val)
++ goto out;
++
++ if (!link)
++ hw_dbg(hw, "Link taking longer than expected.\n");
++
++ /* Try once more */
++ ret_val = e1000_phy_has_link_generic(hw,
++ PHY_FORCE_LIMIT,
++ 100000,
++ &link);
++ if (ret_val)
++ goto out;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
++ * @hw: pointer to the HW structure
++ *
++ * Calls the PHY setup function to force speed and duplex. Clears the
++ * auto-crossover to force MDI manually. Resets the PHY to commit the
++ * changes. If time expires while waiting for link up, we reset the DSP.
++ * After reset, TX_CLK and CRS on TX must be set. Return successful upon
++ * successful completion, else return corresponding error code.
++ **/
++s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 phy_data;
++ bool link;
++
++ /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
++ * forced whenever speed and duplex are forced.
++ */
++ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
++ if (ret_val)
++ goto out;
++
++ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
++ ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
++ if (ret_val)
++ goto out;
++
++ hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
++
++ ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
++ if (ret_val)
++ goto out;
++
++ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
++
++ /* Reset the phy to commit changes. */
++ phy_data |= MII_CR_RESET;
++
++ ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
++ if (ret_val)
++ goto out;
++
++ udelay(1);
++
++ if (phy->wait_for_link) {
++ hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n");
++
++ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
++ 100000, &link);
++ if (ret_val)
++ goto out;
++
++ if (!link) {
++ /* We didn't get link.
++ * Reset the DSP and cross our fingers.
++ */
++ ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d);
++ if (ret_val)
++ goto out;
++ ret_val = e1000_phy_reset_dsp(hw);
++ if (ret_val)
++ goto out;
++ }
++
++ /* Try once more */
++ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
++ 100000, &link);
++ if (ret_val)
++ goto out;
++ }
++
++ ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
++ if (ret_val)
++ goto out;
++
++ /* Resetting the phy means we need to re-force TX_CLK in the
++ * Extended PHY Specific Control Register to 25MHz clock from
++ * the reset value of 2.5MHz.
++ */
++ phy_data |= M88E1000_EPSCR_TX_CLK_25;
++ ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
++ if (ret_val)
++ goto out;
++
++ /* In addition, we must re-enable CRS on Tx for both half and full
++ * duplex.
++ */
++ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
++ if (ret_val)
++ goto out;
++
++ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
++ ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
++ * @hw: pointer to the HW structure
++ * @phy_ctrl: pointer to current value of PHY_CONTROL
++ *
++ * Forces speed and duplex on the PHY by doing the following: disable flow
++ * control, force speed/duplex on the MAC, disable auto speed detection,
++ * disable auto-negotiation, configure duplex, configure speed, configure
++ * the collision distance, write configuration to CTRL register. The
++ * caller must write to the PHY_CONTROL register for these settings to
++ * take affect.
++ **/
++void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
++{
++ struct e1000_mac_info *mac = &hw->mac;
++ u32 ctrl;
++
++ /* Turn off flow control when forcing speed/duplex */
++ mac->fc = e1000_fc_none;
++
++ /* Force speed/duplex on the mac */
++ ctrl = er32(CTRL);
++ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
++ ctrl &= ~E1000_CTRL_SPD_SEL;
++
++ /* Disable Auto Speed Detection */
++ ctrl &= ~E1000_CTRL_ASDE;
++
++ /* Disable autoneg on the phy */
++ *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
++
++ /* Forcing Full or Half Duplex? */
++ if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
++ ctrl &= ~E1000_CTRL_FD;
++ *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
++ hw_dbg(hw, "Half Duplex\n");
++ } else {
++ ctrl |= E1000_CTRL_FD;
++ *phy_ctrl |= MII_CR_FULL_DUPLEX;
++ hw_dbg(hw, "Full Duplex\n");
++ }
++
++ /* Forcing 10mb or 100mb? */
++ if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
++ ctrl |= E1000_CTRL_SPD_100;
++ *phy_ctrl |= MII_CR_SPEED_100;
++ *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
++ hw_dbg(hw, "Forcing 100mb\n");
++ } else {
++ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
++ *phy_ctrl |= MII_CR_SPEED_10;
++ *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
++ hw_dbg(hw, "Forcing 10mb\n");
++ }
++
++ e1000_config_collision_dist(hw);
++
++ ew32(CTRL, ctrl);
++}
++
++/**
++ * e1000_set_d3_lplu_state - Sets low power link up state for D3
++ * @hw: pointer to the HW structure
++ * @active: boolean used to enable/disable lplu
++ *
++ * Success returns 0, Failure returns 1
++ *
++ * The low power link up (lplu) state is set to the power management level D3
++ * and SmartSpeed is disabled when active is true, else clear lplu for D3
++ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
++ * is used during Dx states where the power conservation is most important.
++ * During driver activity, SmartSpeed should be enabled so performance is
++ * maintained.
++ **/
++s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 data;
++
++ ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
++ if (ret_val)
++ goto out;
++
++ if (!active) {
++ data &= ~IGP02E1000_PM_D3_LPLU;
++ ret_val = e1e_wphy(hw,
++ IGP02E1000_PHY_POWER_MGMT,
++ data);
++ if (ret_val)
++ goto out;
++ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
++ * during Dx states where the power conservation is most
++ * important. During driver activity we should enable
++ * SmartSpeed, so performance is maintained. */
++ if (phy->smart_speed == e1000_smart_speed_on) {
++ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++ &data);
++ if (ret_val)
++ goto out;
++
++ data |= IGP01E1000_PSCFR_SMART_SPEED;
++ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++ data);
++ if (ret_val)
++ goto out;
++ } else if (phy->smart_speed == e1000_smart_speed_off) {
++ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++ &data);
++ if (ret_val)
++ goto out;
++
++ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++ data);
++ if (ret_val)
++ goto out;
++ }
++ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
++ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
++ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
++ data |= IGP02E1000_PM_D3_LPLU;
++ ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
++ if (ret_val)
++ goto out;
++
++ /* When LPLU is enabled, we should disable SmartSpeed */
++ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
++ if (ret_val)
++ goto out;
++
++ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_check_downshift - Checks whether a downshift in speed occured
++ * @hw: pointer to the HW structure
++ *
++ * Success returns 0, Failure returns 1
++ *
++ * A downshift is detected by querying the PHY link health.
++ **/
++s32 e1000_check_downshift(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 phy_data, offset, mask;
++
++ switch (phy->type) {
++ case e1000_phy_m88:
++ case e1000_phy_gg82563:
++ offset = M88E1000_PHY_SPEC_STATUS;
++ mask = M88E1000_PSSR_DOWNSHIFT;
++ break;
++ case e1000_phy_igp_2:
++ case e1000_phy_igp_3:
++ offset = IGP01E1000_PHY_LINK_HEALTH;
++ mask = IGP01E1000_PLHR_SS_DOWNGRADE;
++ break;
++ default:
++ /* speed downshift not supported */
++ phy->speed_downgraded = 0;
++ ret_val = E1000_SUCCESS;
++ goto out;
++ }
++
++ ret_val = e1e_rphy(hw, offset, &phy_data);
++
++ if (!ret_val)
++ phy->speed_downgraded = (phy_data & mask);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_check_polarity_m88 - Checks the polarity.
++ * @hw: pointer to the HW structure
++ *
++ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
++ *
++ * Polarity is determined based on the PHY specific status register.
++ **/
++static s32 e1000_check_polarity_m88(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 data;
++
++ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
++
++ if (!ret_val)
++ phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
++ ? e1000_rev_polarity_reversed
++ : e1000_rev_polarity_normal;
++
++ return ret_val;
++}
++
++/**
++ * e1000_check_polarity_igp - Checks the polarity.
++ * @hw: pointer to the HW structure
++ *
++ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
++ *
++ * Polarity is determined based on the PHY port status register, and the
++ * current speed (since there is no polarity at 100Mbps).
++ **/
++static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 data, offset, mask;
++
++ /* Polarity is determined based on the speed of
++ * our connection. */
++ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
++ if (ret_val)
++ goto out;
++
++ if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
++ IGP01E1000_PSSR_SPEED_1000MBPS) {
++ offset = IGP01E1000_PHY_PCS_INIT_REG;
++ mask = IGP01E1000_PHY_POLARITY_MASK;
++ } else {
++ /* This really only applies to 10Mbps since
++ * there is no polarity for 100Mbps (always 0).
++ */
++ offset = IGP01E1000_PHY_PORT_STATUS;
++ mask = IGP01E1000_PSSR_POLARITY_REVERSED;
++ }
++
++ ret_val = e1e_rphy(hw, offset, &data);
++
++ if (!ret_val)
++ phy->cable_polarity = (data & mask)
++ ? e1000_rev_polarity_reversed
++ : e1000_rev_polarity_normal;
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_wait_autoneg - Wait for auto-neg compeletion
++ * @hw: pointer to the HW structure
++ *
++ * Waits for auto-negotiation to complete or for the auto-negotiation time
++ * limit to expire, which ever happens first.
++ **/
++s32 e1000_wait_autoneg(struct e1000_hw *hw)
++{
++ s32 ret_val = E1000_SUCCESS;
++ u16 i, phy_status;
++
++ /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
++ for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
++ ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
++ if (ret_val)
++ break;
++ ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
++ if (ret_val)
++ break;
++ if (phy_status & MII_SR_AUTONEG_COMPLETE)
++ break;
++ msleep(100);
++ }
++
++ /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
++ * has completed.
++ */
++ return ret_val;
++}
++
++/**
++ * e1000_phy_has_link_generic - Polls PHY for link
++ * @hw: pointer to the HW structure
++ * @iterations: number of times to poll for link
++ * @usec_interval: delay between polling attempts
++ * @success: pointer to whether polling was successful or not
++ *
++ * Polls the PHY status register for link, 'iterations' number of times.
++ **/
++s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
++ u32 usec_interval, bool *success)
++{
++ s32 ret_val = E1000_SUCCESS;
++ u16 i, phy_status;
++
++ for (i = 0; i < iterations; i++) {
++ /* Some PHYs require the PHY_STATUS register to be read
++ * twice due to the link bit being sticky. No harm doing
++ * it across the board.
++ */
++ ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
++ if (ret_val)
++ break;
++ ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
++ if (ret_val)
++ break;
++ if (phy_status & MII_SR_LINK_STATUS)
++ break;
++ if (usec_interval >= 1000)
++ mdelay(usec_interval/1000);
++ else
++ udelay(usec_interval);
++ }
++
++ *success = (i < iterations);
++
++ return ret_val;
++}
++
++/**
++ * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
++ * @hw: pointer to the HW structure
++ *
++ * Reads the PHY specific status register to retrieve the cable length
++ * information. The cable length is determined by averaging the minimum and
++ * maximum values to get the "average" cable length. The m88 PHY has four
++ * possible cable length values, which are:
++ * Register Value Cable Length
++ * 0 < 50 meters
++ * 1 50 - 80 meters
++ * 2 80 - 110 meters
++ * 3 110 - 140 meters
++ * 4 > 140 meters
++ **/
++s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 phy_data, index;
++
++ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
++ if (ret_val)
++ goto out;
++
++ index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
++ M88E1000_PSSR_CABLE_LENGTH_SHIFT;
++ phy->min_cable_length = e1000_m88_cable_length_table[index];
++ phy->max_cable_length = e1000_m88_cable_length_table[index+1];
++
++ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
++ * @hw: pointer to the HW structure
++ *
++ * The automatic gain control (agc) normalizes the amplitude of the
++ * received signal, adjusting for the attenuation produced by the
++ * cable. By reading the AGC registers, which reperesent the
++ * cobination of course and fine gain value, the value can be put
++ * into a lookup table to obtain the approximate cable length
++ * for each channel.
++ **/
++s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 phy_data, i, agc_value = 0;
++ u16 cur_agc_index, max_agc_index = 0;
++ u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
++ u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
++ {IGP02E1000_PHY_AGC_A,
++ IGP02E1000_PHY_AGC_B,
++ IGP02E1000_PHY_AGC_C,
++ IGP02E1000_PHY_AGC_D};
++
++ /* Read the AGC registers for all channels */
++ for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
++ ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
++ if (ret_val)
++ goto out;
++
++ /* Getting bits 15:9, which represent the combination of
++ * course and fine gain values. The result is a number
++ * that can be put into the lookup table to obtain the
++ * approximate cable length. */
++ cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
++ IGP02E1000_AGC_LENGTH_MASK;
++
++ /* Array index bound check. */
++ if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
++ (cur_agc_index == 0)) {
++ ret_val = -E1000_ERR_PHY;
++ goto out;
++ }
++
++ /* Remove min & max AGC values from calculation. */
++ if (e1000_igp_2_cable_length_table[min_agc_index] >
++ e1000_igp_2_cable_length_table[cur_agc_index])
++ min_agc_index = cur_agc_index;
++ if (e1000_igp_2_cable_length_table[max_agc_index] <
++ e1000_igp_2_cable_length_table[cur_agc_index])
++ max_agc_index = cur_agc_index;
++
++ agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
++ }
++
++ agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
++ e1000_igp_2_cable_length_table[max_agc_index]);
++ agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
++
++ /* Calculate cable length with the error range of +/- 10 meters. */
++ phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
++ (agc_value - IGP02E1000_AGC_RANGE) : 0;
++ phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
++
++ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_get_phy_info_m88 - Retrieve PHY information
++ * @hw: pointer to the HW structure
++ *
++ * Valid for only copper links. Read the PHY status register (sticky read)
++ * to verify that link is up. Read the PHY special control register to
++ * determine the polarity and 10base-T extended distance. Read the PHY
++ * special status register to determine MDI/MDIx and current speed. If
++ * speed is 1000, then determine cable length, local and remote receiver.
++ **/
++s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 phy_data;
++ bool link;
++
++ if (hw->media_type != e1000_media_type_copper) {
++ hw_dbg(hw, "Phy info is only valid for copper media\n");
++ ret_val = -E1000_ERR_CONFIG;
++ goto out;
++ }
++
++ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++ if (ret_val)
++ goto out;
++
++ if (!link) {
++ hw_dbg(hw, "Phy info is only valid if link is up\n");
++ ret_val = -E1000_ERR_CONFIG;
++ goto out;
++ }
++
++ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
++ if (ret_val)
++ goto out;
++
++ phy->polarity_correction = (phy_data &
++ M88E1000_PSCR_POLARITY_REVERSAL);
++
++ ret_val = e1000_check_polarity_m88(hw);
++ if (ret_val)
++ goto out;
++
++ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
++ if (ret_val)
++ goto out;
++
++ phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
++
++ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
++ ret_val = e1000_get_cable_length(hw);
++ if (ret_val)
++ goto out;
++
++ ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
++ if (ret_val)
++ goto out;
++
++ phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
++ ? e1000_1000t_rx_status_ok
++ : e1000_1000t_rx_status_not_ok;
++
++ phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
++ ? e1000_1000t_rx_status_ok
++ : e1000_1000t_rx_status_not_ok;
++ } else {
++ /* Set values to "undefined" */
++ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
++ phy->local_rx = e1000_1000t_rx_status_undefined;
++ phy->remote_rx = e1000_1000t_rx_status_undefined;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_get_phy_info_igp - Retrieve igp PHY information
++ * @hw: pointer to the HW structure
++ *
++ * Read PHY status to determine if link is up. If link is up, then
++ * set/determine 10base-T extended distance and polarity correction. Read
++ * PHY port status to determine MDI/MDIx and speed. Based on the speed,
++ * determine on the cable length, local and remote receiver.
++ **/
++s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u16 data;
++ bool link;
++
++ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++ if (ret_val)
++ goto out;
++
++ if (!link) {
++ hw_dbg(hw, "Phy info is only valid if link is up\n");
++ ret_val = -E1000_ERR_CONFIG;
++ goto out;
++ }
++
++ phy->polarity_correction = 1;
++
++ ret_val = e1000_check_polarity_igp(hw);
++ if (ret_val)
++ goto out;
++
++ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
++ if (ret_val)
++ goto out;
++
++ phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
++
++ if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
++ IGP01E1000_PSSR_SPEED_1000MBPS) {
++ ret_val = e1000_get_cable_length(hw);
++ if (ret_val)
++ goto out;
++
++ ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
++ if (ret_val)
++ goto out;
++
++ phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
++ ? e1000_1000t_rx_status_ok
++ : e1000_1000t_rx_status_not_ok;
++
++ phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
++ ? e1000_1000t_rx_status_ok
++ : e1000_1000t_rx_status_not_ok;
++ } else {
++ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
++ phy->local_rx = e1000_1000t_rx_status_undefined;
++ phy->remote_rx = e1000_1000t_rx_status_undefined;
++ }
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_phy_sw_reset - PHY software reset
++ * @hw: pointer to the HW structure
++ *
++ * Does a software reset of the PHY by reading the PHY control register and
++ * setting/write the control register reset bit to the PHY.
++ **/
++s32 e1000_phy_sw_reset(struct e1000_hw *hw)
++{
++ s32 ret_val;
++ u16 phy_ctrl;
++
++ ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
++ if (ret_val)
++ goto out;
++
++ phy_ctrl |= MII_CR_RESET;
++ ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
++ if (ret_val)
++ goto out;
++
++ udelay(1);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_phy_hw_reset_generic - PHY hardware reset
++ * @hw: pointer to the HW structure
++ *
++ * Verify the reset block is not blocking us from resetting. Acquire
++ * semaphore (if necessary) and read/set/write the device control reset
++ * bit in the PHY. Wait the appropriate delay time for the device to
++ * reset and relase the semaphore (if necessary).
++ **/
++s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
++{
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
++ u32 ctrl;
++
++ ret_val = e1000_check_reset_block(hw);
++ if (ret_val) {
++ ret_val = E1000_SUCCESS;
++ goto out;
++ }
++
++ ret_val = phy->ops.acquire_phy(hw);
++ if (ret_val)
++ goto out;
++
++ ctrl = er32(CTRL);
++ ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
++ e1e_flush();
++
++ udelay(phy->reset_delay_us);
++
++ ew32(CTRL, ctrl);
++ e1e_flush();
++
++ udelay(150);
++
++ phy->ops.release_phy(hw);
++
++ ret_val = e1000_get_phy_cfg_done(hw);
++
++out:
++ return ret_val;
++}
++
++/**
++ * e1000_get_cfg_done - Generic configuration done
++ * @hw: pointer to the HW structure
++ *
++ * Generic function to wait 10 milli-seconds for configuration to complete
++ * and return success.
++ **/
++s32 e1000_get_cfg_done(struct e1000_hw *hw)
++{
++ mdelay(10);
++
++ return E1000_SUCCESS;
++}
++
++/* Internal function pointers */
++
++/**
++ * e1000_get_phy_cfg_done - Generic PHY configuration done
++ * @hw: pointer to the HW structure
++ *
++ * Return success if silicon family did not implement a family specific
++ * get_cfg_done function.
++ **/
++static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
++{
++ if (hw->phy.ops.get_cfg_done)
++ return hw->phy.ops.get_cfg_done(hw);
++ else
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
++ * @hw: pointer to the HW structure
++ *
++ * When the silicon family has not implemented a forced speed/duplex
++ * function for the PHY, simply return E1000_SUCCESS.
++ **/
++static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
++{
++ if (hw->phy.ops.force_speed_duplex)
++ return hw->phy.ops.force_speed_duplex(hw);
++ else
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_get_phy_type_from_id - Get PHY type from id
++ * @phy_id: phy_id read from the phy
++ *
++ * Returns the phy type from the id.
++ **/
++enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
++{
++ enum e1000_phy_type phy_type = e1000_phy_unknown;
++
++ switch (phy_id) {
++ case M88E1000_I_PHY_ID:
++ case M88E1000_E_PHY_ID:
++ case M88E1111_I_PHY_ID:
++ case M88E1011_I_PHY_ID:
++ phy_type = e1000_phy_m88;
++ break;
++ case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
++ phy_type = e1000_phy_igp_2;
++ break;
++ case GG82563_E_PHY_ID:
++ phy_type = e1000_phy_gg82563;
++ break;
++ case IGP03E1000_E_PHY_ID:
++ phy_type = e1000_phy_igp_3;
++ break;
++ case IFE_E_PHY_ID:
++ case IFE_PLUS_E_PHY_ID:
++ case IFE_C_E_PHY_ID:
++ phy_type = e1000_phy_ife;
++ break;
++ default:
++ phy_type = e1000_phy_unknown;
++ break;
++ }
++ return phy_type;
++}
++
++/**
++ * e1000_commit_phy - Soft PHY reset
++ * @hw: pointer to the HW structure
++ *
++ * Performs a soft PHY reset on those that apply. This is a function pointer
++ * entry point called by drivers.
++ **/
++s32 e1000_commit_phy(struct e1000_hw *hw)
++{
++ if (hw->phy.ops.commit_phy)
++ return hw->phy.ops.commit_phy(hw);
++ else
++ return E1000_SUCCESS;
++}
++
++/**
++ * e1000_set_d0_lplu_state - Sets low power link up state for D0
++ * @hw: pointer to the HW structure
++ * @active: boolean used to enable/disable lplu
++ *
++ * Success returns 0, Failure returns 1
++ *
++ * The low power link up (lplu) state is set to the power management level D0
++ * and SmartSpeed is disabled when active is true, else clear lplu for D0
++ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
++ * is used during Dx states where the power conservation is most important.
++ * During driver activity, SmartSpeed should be enabled so performance is
++ * maintained. This is a function pointer entry point called by drivers.
++ **/
++s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
++{
++ if (hw->phy.ops.set_d0_lplu_state)
++ return hw->phy.ops.set_d0_lplu_state(hw, active);
++ else
++ return E1000_SUCCESS;
++}
diff --git a/trunk/2.6.21/21351_linux-2.6-netdev-e1000e-02.patch b/trunk/2.6.21/21351_linux-2.6-netdev-e1000e-02.patch
new file mode 100644
index 0000000..6ec22f6
--- /dev/null
+++ b/trunk/2.6.21/21351_linux-2.6-netdev-e1000e-02.patch
@@ -0,0 +1,4358 @@
+From: Auke Kok <auke-jan.h.kok@intel.com>
+Date: Wed, 8 Aug 2007 17:21:52 +0000 (-0700)
+Subject: e1000e: Remove unused or empty labels
+X-Git-Url: http://git.kernel.org/?p=linux%2Fkernel%2Fgit%2Fjgarzik%2Fnetdev-2.6.git;a=commitdiff_plain;h=3ee7c3bfcc0cc2048cc5d53dd792375e52fe930c
+
+e1000e: Remove unused or empty labels
+
+Remove labels with only return, remove E1000_SUCCESS code and
+replace with 0. Remove most goto's.
+
+Signed-off-by: Auke Kok <auke-jan.h.kok@intel.com>
+Signed-off-by: Jeff Garzik <jeff@garzik.org>
+---
+
+diff --git a/drivers/net/e1000e/82571.c b/drivers/net/e1000e/82571.c
+index a1b9d16..ddf2303 100644
+--- a/drivers/net/e1000e/82571.c
++++ b/drivers/net/e1000e/82571.c
+@@ -67,11 +67,11 @@ static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
+ static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
+ {
+ struct e1000_phy_info *phy = &hw->phy;
+- s32 ret_val = E1000_SUCCESS;
++ s32 ret_val;
+
+ if (hw->media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+- goto out;
++ return 0;
+ }
+
+ phy->addr = 1;
+@@ -87,8 +87,7 @@ static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
+ phy->type = e1000_phy_m88;
+ break;
+ default:
+- ret_val = -E1000_ERR_PHY;
+- goto out;
++ return -E1000_ERR_PHY;
+ break;
+ }
+
+@@ -99,25 +98,19 @@ static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+- if (phy->id != IGP01E1000_I_PHY_ID) {
+- ret_val = -E1000_ERR_PHY;
+- goto out;
+- }
++ if (phy->id != IGP01E1000_I_PHY_ID)
++ return -E1000_ERR_PHY;
+ break;
+ case e1000_82573:
+- if (phy->id != M88E1111_I_PHY_ID) {
+- ret_val = -E1000_ERR_PHY;
+- goto out;
+- }
++ if (phy->id != M88E1111_I_PHY_ID)
++ return -E1000_ERR_PHY;
+ break;
+ default:
+- ret_val = -E1000_ERR_PHY;
+- goto out;
++ return -E1000_ERR_PHY;
+ break;
+ }
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -174,7 +167,7 @@ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
+ break;
+ }
+
+- return E1000_SUCCESS;
++ return 0;
+ }
+
+ /**
+@@ -188,7 +181,6 @@ static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
+ struct e1000_hw *hw = &adapter->hw;
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_mac_operations *func = &mac->ops;
+- s32 ret_val = E1000_SUCCESS;
+
+ /* Set media type */
+ switch (adapter->pdev->device) {
+@@ -232,13 +224,11 @@ static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
+ func->get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes;
+ break;
+ default:
+- ret_val = -E1000_ERR_CONFIG;
+- goto out;
++ return -E1000_ERR_CONFIG;
+ break;
+ }
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
+@@ -306,7 +296,7 @@ static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
+ break;
+ }
+
+- return E1000_SUCCESS;
++ return 0;
+ }
+
+ /**
+@@ -319,7 +309,6 @@ static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
+ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
+ {
+ struct e1000_phy_info *phy = &hw->phy;
+- s32 ret_val = E1000_SUCCESS;
+
+ switch (hw->mac.type) {
+ case e1000_82571:
+@@ -331,14 +320,14 @@ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
+ phy->id = IGP01E1000_I_PHY_ID;
+ break;
+ case e1000_82573:
+- ret_val = e1000_get_phy_id(hw);
++ return e1000_get_phy_id(hw);
+ break;
+ default:
+- ret_val = -E1000_ERR_PHY;
++ return -E1000_ERR_PHY;
+ break;
+ }
+
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -350,7 +339,6 @@ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
+ static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
+ {
+ u32 swsm;
+- s32 ret_val = E1000_SUCCESS;
+ s32 timeout = hw->nvm.word_size + 1;
+ s32 i = 0;
+
+@@ -370,12 +358,10 @@ static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
+ /* Release semaphores */
+ e1000_put_hw_semaphore(hw);
+ hw_dbg(hw, "Driver can't access the NVM\n");
+- ret_val = -E1000_ERR_NVM;
+- goto out;
++ return -E1000_ERR_NVM;
+ }
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -410,7 +396,7 @@ static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
+
+ ret_val = e1000_get_hw_semaphore_82571(hw);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ if (hw->mac.type != e1000_82573)
+ ret_val = e1000_acquire_nvm(hw);
+@@ -418,7 +404,6 @@ static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
+ if (ret_val)
+ e1000_put_hw_semaphore_82571(hw);
+
+-out:
+ return ret_val;
+ }
+
+@@ -449,7 +434,7 @@ static void e1000_release_nvm_82571(struct e1000_hw *hw)
+ static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+ {
+- s32 ret_val = E1000_SUCCESS;
++ s32 ret_val;
+
+ switch (hw->mac.type) {
+ case e1000_82573:
+@@ -483,12 +468,12 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+
+ ret_val = e1000_update_nvm_checksum_generic(hw);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ /* If our nvm is an EEPROM, then we're done
+ * otherwise, commit the checksum to the flash NVM. */
+ if (hw->nvm.type != e1000_nvm_flash_hw)
+- goto out;
++ return ret_val;
+
+ /* Check for pending operations. */
+ for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+@@ -497,10 +482,8 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+ break;
+ }
+
+- if (i == E1000_FLASH_UPDATES) {
+- ret_val = -E1000_ERR_NVM;
+- goto out;
+- }
++ if (i == E1000_FLASH_UPDATES)
++ return -E1000_ERR_NVM;
+
+ /* Reset the firmware if using STM opcode. */
+ if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
+@@ -522,13 +505,10 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+ break;
+ }
+
+- if (i == E1000_FLASH_UPDATES) {
+- ret_val = -E1000_ERR_NVM;
+- goto out;
+- }
++ if (i == E1000_FLASH_UPDATES)
++ return -E1000_ERR_NVM;
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -573,8 +553,7 @@ static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ hw_dbg(hw, "nvm parameter(s) out of bounds\n");
+- ret_val = -E1000_ERR_NVM;
+- goto out;
++ return -E1000_ERR_NVM;
+ }
+
+ for (i = 0; i < words; i++) {
+@@ -593,7 +572,6 @@ static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+ break;
+ }
+
+-out:
+ return ret_val;
+ }
+
+@@ -606,7 +584,6 @@ out:
+ static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
+ {
+ s32 timeout = PHY_CFG_TIMEOUT;
+- s32 ret_val = E1000_SUCCESS;
+
+ while (timeout) {
+ if (er32(EEMNGCTL) &
+@@ -617,12 +594,10 @@ static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
+ }
+ if (!timeout) {
+ hw_dbg(hw, "MNG configuration cycle has not completed.\n");
+- ret_val = -E1000_ERR_RESET;
+- goto out;
++ return -E1000_ERR_RESET;
+ }
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -644,20 +619,20 @@ static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
+
+ ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ if (active) {
+ data |= IGP02E1000_PM_D0_LPLU;
+ ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+ } else {
+ data &= ~IGP02E1000_PM_D0_LPLU;
+ ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+@@ -669,29 +644,28 @@ static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
+ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+ }
+ }
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -762,7 +736,7 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
+ ret_val = e1000_get_auto_rd_done(hw);
+ if (ret_val)
+ /* We don't want to continue accessing MAC registers. */
+- goto out;
++ return ret_val;
+
+ /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
+ * Need to wait for Phy configuration completion before accessing
+@@ -775,8 +749,7 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
+ ew32(IMC, 0xffffffff);
+ icr = er32(ICR);
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -799,7 +772,7 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw)
+ ret_val = e1000_id_led_init(hw);
+ if (ret_val) {
+ hw_dbg(hw, "Error initializing identification LED\n");
+- goto out;
++ return ret_val;
+ }
+
+ /* Disabling VLAN filtering */
+@@ -851,7 +824,6 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw)
+ */
+ e1000_clear_hw_cntrs_82571(hw);
+
+-out:
+ return ret_val;
+ }
+
+@@ -1041,16 +1013,15 @@ static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
+ ew32(LEDCTL, led_ctrl);
+ break;
+ default:
+- ret_val = -E1000_ERR_PHY;
++ return -E1000_ERR_PHY;
+ break;
+ }
+
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ ret_val = e1000_setup_copper_link(hw);
+
+-out:
+ return ret_val;
+ }
+
+@@ -1097,7 +1068,7 @@ static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
+ ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ hw_dbg(hw, "NVM Read Error\n");
+- goto out;
++ return ret_val;
+ }
+
+ if (hw->mac.type == e1000_82573 &&
+@@ -1107,8 +1078,7 @@ static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
+ *data == ID_LED_RESERVED_FFFF)
+ *data = ID_LED_DEFAULT;
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -1135,7 +1105,7 @@ bool e1000_get_laa_state_82571(struct e1000_hw *hw)
+ void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
+ {
+ if (hw->mac.type != e1000_82571)
+- goto out;
++ return;
+
+ hw->dev_spec.e82571.laa_is_present = state;
+
+@@ -1148,9 +1118,6 @@ void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
+ * Eventually the LAA will be in RAR[0] and RAR[14].
+ */
+ e1000_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
+-
+-out:
+- return;
+ }
+
+ /**
+@@ -1166,18 +1133,18 @@ out:
+ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
+ {
+ struct e1000_nvm_info *nvm = &hw->nvm;
+- s32 ret_val = E1000_SUCCESS;
++ s32 ret_val;
+ u16 data;
+
+ if (nvm->type != e1000_nvm_flash_hw)
+- goto out;
++ return 0;
+
+ /* Check bit 4 of word 10h. If it is 0, firmware is done updating
+ * 10h-12h. Checksum may need to be fixed.
+ */
+ ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ if (!(data & 0x10)) {
+ /* Read 0x23 and check bit 15. This bit is a 1
+@@ -1189,19 +1156,18 @@ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
+ */
+ ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ if (!(data & 0x8000)) {
+ data |= 0x8000;
+ ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+ ret_val = e1000_update_nvm_checksum(hw);
+ }
+ }
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+diff --git a/drivers/net/e1000e/defines.h b/drivers/net/e1000e/defines.h
+index e0a36f1..ca80fde 100644
+--- a/drivers/net/e1000e/defines.h
++++ b/drivers/net/e1000e/defines.h
+@@ -413,7 +413,6 @@
+ #define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
+
+ /* Error Codes */
+-#define E1000_SUCCESS 0
+ #define E1000_ERR_NVM 1
+ #define E1000_ERR_PHY 2
+ #define E1000_ERR_CONFIG 3
+diff --git a/drivers/net/e1000e/es2lan.c b/drivers/net/e1000e/es2lan.c
+index b5143e9..5604c50 100644
+--- a/drivers/net/e1000e/es2lan.c
++++ b/drivers/net/e1000e/es2lan.c
+@@ -111,11 +111,11 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
+ static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
+ {
+ struct e1000_phy_info *phy = &hw->phy;
+- s32 ret_val = E1000_SUCCESS;
++ s32 ret_val;
+
+ if (hw->media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+- goto out;
++ return 0;
+ }
+
+ phy->addr = 1;
+@@ -127,12 +127,9 @@ static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
+ ret_val = e1000_get_phy_id(hw);
+
+ /* Verify phy id */
+- if (phy->id != GG82563_E_PHY_ID) {
+- ret_val = -E1000_ERR_PHY;
+- goto out;
+- }
++ if (phy->id != GG82563_E_PHY_ID)
++ return -E1000_ERR_PHY;
+
+-out:
+ return ret_val;
+ }
+
+@@ -176,7 +173,7 @@ static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
+ size += NVM_WORD_SIZE_BASE_SHIFT;
+ nvm->word_size = 1 << size;
+
+- return E1000_SUCCESS;
++ return 0;
+ }
+
+ /**
+@@ -190,7 +187,6 @@ static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
+ struct e1000_hw *hw = &adapter->hw;
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_mac_operations *func = &mac->ops;
+- s32 ret_val = E1000_SUCCESS;
+
+ /* Set media type */
+ switch (adapter->pdev->device) {
+@@ -225,13 +221,11 @@ static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
+ func->check_for_link = e1000_check_for_serdes_link;
+ break;
+ default:
+- ret_val = -E1000_ERR_CONFIG;
+- goto out;
++ return -E1000_ERR_CONFIG;
+ break;
+ }
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter)
+@@ -251,7 +245,7 @@ static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter)
+ if (rc)
+ return rc;
+
+- return E1000_SUCCESS;
++ return 0;
+ }
+
+ /**
+@@ -298,14 +292,13 @@ static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
+
+ ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ ret_val = e1000_acquire_nvm(hw);
+
+ if (ret_val)
+ e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+
+-out:
+ return ret_val;
+ }
+
+@@ -335,15 +328,12 @@ static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+ u32 swfw_sync;
+ u32 swmask = mask;
+ u32 fwmask = mask << 16;
+- s32 ret_val = E1000_SUCCESS;
+ s32 i = 0;
+ s32 timeout = 200;
+
+ while (i < timeout) {
+- if (e1000_get_hw_semaphore(hw)) {
+- ret_val = -E1000_ERR_SWFW_SYNC;
+- goto out;
+- }
++ if (e1000_get_hw_semaphore(hw))
++ return -E1000_ERR_SWFW_SYNC;
+
+ swfw_sync = er32(SW_FW_SYNC);
+ if (!(swfw_sync & (fwmask | swmask)))
+@@ -359,8 +349,7 @@ static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+ if (i == timeout) {
+ hw_dbg(hw,
+ "Driver can't access resource, SW_FW_SYNC timeout.\n");
+- ret_val = -E1000_ERR_SWFW_SYNC;
+- goto out;
++ return -E1000_ERR_SWFW_SYNC;
+ }
+
+ swfw_sync |= swmask;
+@@ -368,8 +357,7 @@ static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+
+ e1000_put_hw_semaphore(hw);
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -384,7 +372,7 @@ static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+ {
+ u32 swfw_sync;
+
+- while (e1000_get_hw_semaphore(hw) != E1000_SUCCESS);
++ while (e1000_get_hw_semaphore(hw) != 0);
+ /* Empty */
+
+ swfw_sync = er32(SW_FW_SYNC);
+@@ -422,7 +410,7 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+ ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ /* The "ready" bit in the MDIC register may be incorrectly set
+ * before the device has completed the "Page Select" MDI
+@@ -435,7 +423,7 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+
+ if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+ ret_val = -E1000_ERR_PHY;
+- goto out;
++ return ret_val;
+ }
+
+ udelay(200);
+@@ -446,7 +434,6 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+
+ udelay(200);
+
+-out:
+ return ret_val;
+ }
+
+@@ -478,7 +465,7 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+ ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+
+ /* The "ready" bit in the MDIC register may be incorrectly set
+@@ -490,10 +477,8 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ /* ...and verify the command was successful. */
+ ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);
+
+- if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+- ret_val = -E1000_ERR_PHY;
+- goto out;
+- }
++ if (((u16)offset >> GG82563_PAGE_SHIFT) != temp)
++ return -E1000_ERR_PHY;
+
+ udelay(200);
+
+@@ -503,7 +488,6 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+
+ udelay(200);
+
+-out:
+ return ret_val;
+ }
+
+@@ -533,7 +517,6 @@ static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+ static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
+ {
+ s32 timeout = PHY_CFG_TIMEOUT;
+- s32 ret_val = E1000_SUCCESS;
+ u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+ if (hw->bus.func == 1)
+@@ -547,12 +530,10 @@ static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
+ }
+ if (!timeout) {
+ hw_dbg(hw, "MNG configuration cycle has not completed.\n");
+- ret_val = -E1000_ERR_RESET;
+- goto out;
++ return -E1000_ERR_RESET;
+ }
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -573,18 +554,18 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+ */
+ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
+ ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
+
+ ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+@@ -593,7 +574,7 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+
+ ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ udelay(1);
+
+@@ -604,7 +585,7 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ if (!link) {
+ /* We didn't get link.
+@@ -612,19 +593,19 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+ */
+ ret_val = e1000_phy_reset_dsp(hw);
+ if (ret_val)
+- goto out;
++ return ret_val;
+ }
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+- goto out;
++ return ret_val;
+ }
+
+ ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ /* Resetting the phy means we need to verify the TX_CLK corresponds
+ * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
+@@ -641,7 +622,6 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+ phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+ ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
+
+-out:
+ return ret_val;
+ }
+
+@@ -661,7 +641,7 @@ static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
+
+ ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ index = phy_data & GG82563_DSPD_CABLE_LENGTH;
+ phy->min_cable_length = e1000_gg82563_cable_length_table[index];
+@@ -669,8 +649,7 @@ static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -692,7 +671,7 @@ static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+ speed,
+ duplex);
+ if (ret_val)
+- goto out;
++ return ret_val;
+ if (*speed == SPEED_1000)
+ ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
+ else
+@@ -704,7 +683,6 @@ static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+ duplex);
+ }
+
+-out:
+ return ret_val;
+ }
+
+@@ -745,14 +723,13 @@ static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
+ ret_val = e1000_get_auto_rd_done(hw);
+ if (ret_val)
+ /* We don't want to continue accessing MAC registers. */
+- goto out;
++ return ret_val;
+
+ /* Clear any pending interrupt events. */
+ ew32(IMC, 0xffffffff);
+ icr = er32(ICR);
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -775,7 +752,7 @@ static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+ ret_val = e1000_id_led_init(hw);
+ if (ret_val) {
+ hw_dbg(hw, "Error initializing identification LED\n");
+- goto out;
++ return ret_val;
+ }
+
+ /* Disabling VLAN filtering */
+@@ -833,7 +810,6 @@ static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+ */
+ e1000_clear_hw_cntrs_80003es2lan(hw);
+
+-out:
+ return ret_val;
+ }
+
+@@ -881,15 +857,15 @@ static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
+ **/
+ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ {
+- struct e1000_phy_info *phy = &hw->phy;
+- s32 ret_val;
++ struct e1000_phy_info *phy = &hw->phy;
++ s32 ret_val;
+ u32 ctrl_ext;
+ u16 data;
+
+ ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ &data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+ /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
+@@ -898,7 +874,7 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ /* Options:
+ * MDI/MDI-X = 0 (default)
+@@ -909,7 +885,7 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ */
+ ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
+
+@@ -938,13 +914,13 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+
+ ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ /* SW Reset the PHY so all changes take effect */
+ ret_val = e1000_commit_phy(hw);
+ if (ret_val) {
+ hw_dbg(hw, "Error Resetting the PHY\n");
+- goto out;
++ return ret_val;
+ }
+
+ /* Bypass RX and TX FIFO's */
+@@ -953,16 +929,16 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
+ E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+ ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ ctrl_ext = er32(CTRL_EXT);
+ ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
+@@ -970,7 +946,7 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+
+ ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ /* Do not init these registers when the HW is in IAMT mode, since the
+ * firmware will have already initialized them. We only initialize
+@@ -981,16 +957,16 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+ ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+ }
+
+ /* Workaround: Disable padding in Kumeran interface in the MAC
+@@ -998,15 +974,14 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ */
+ ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ data |= GG82563_ICR_DIS_PADDING;
+ ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -1019,7 +994,7 @@ out:
+ static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
+ {
+ u32 ctrl;
+- s32 ret_val;
++ s32 ret_val;
+ u16 reg_data;
+
+ ctrl = er32(CTRL);
+@@ -1032,34 +1007,33 @@ static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
+ * polling the phy; this fixes erroneous timeouts at 10Mbps. */
+ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+ if (ret_val)
+- goto out;
++ return ret_val;
+ ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+ reg_data |= 0x3F;
+ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+ ret_val = e1000_read_kmrn_reg(hw,
+ E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+ &reg_data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+ reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
+ ret_val = e1000_write_kmrn_reg(hw,
+ E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+ reg_data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ ret_val = e1000_setup_copper_link(hw);
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -1072,7 +1046,7 @@ out:
+ **/
+ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+ {
+- s32 ret_val = E1000_SUCCESS;
++ s32 ret_val;
+ u32 tipg;
+ u16 reg_data;
+
+@@ -1081,7 +1055,7 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+ E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ reg_data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ /* Configure Transmit Inter-Packet Gap */
+ tipg = er32(TIPG);
+@@ -1091,7 +1065,7 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+
+ ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ if (duplex == HALF_DUPLEX)
+ reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+@@ -1100,8 +1074,7 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+
+ ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -1113,7 +1086,7 @@ out:
+ **/
+ static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+ {
+- s32 ret_val = E1000_SUCCESS;
++ s32 ret_val;
+ u16 reg_data;
+ u32 tipg;
+
+@@ -1122,7 +1095,7 @@ static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+ E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ reg_data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ /* Configure Transmit Inter-Packet Gap */
+ tipg = er32(TIPG);
+@@ -1132,12 +1105,11 @@ static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+
+ ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+-out:
+ return ret_val;
+ }
+
+diff --git a/drivers/net/e1000e/ich8lan.c b/drivers/net/e1000e/ich8lan.c
+index 5967139..042abd4 100644
+--- a/drivers/net/e1000e/ich8lan.c
++++ b/drivers/net/e1000e/ich8lan.c
+@@ -187,7 +187,7 @@ static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
+ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+ {
+ struct e1000_phy_info *phy = &hw->phy;
+- s32 ret_val = E1000_SUCCESS;
++ s32 ret_val;
+ u16 i = 0;
+
+ phy->addr = 1;
+@@ -199,7 +199,7 @@ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+ msleep(1);
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+- goto out;
++ return ret_val;
+ }
+
+ /* Verify phy id */
+@@ -215,12 +215,11 @@ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+ phy->autoneg_mask = E1000_ALL_NOT_GIG;
+ break;
+ default:
+- ret_val = -E1000_ERR_PHY;
+- goto out;
++ return -E1000_ERR_PHY;
++ break;
+ }
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -237,15 +236,13 @@ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
+ u32 gfpreg;
+ u32 sector_base_addr;
+ u32 sector_end_addr;
+- s32 ret_val = E1000_SUCCESS;
+ u16 i;
+
+ /* Can't read flash registers if the register set isn't mapped.
+ */
+ if (!hw->flash_address) {
+ hw_dbg(hw, "ERROR: Flash registers not mapped\n");
+- ret_val = -E1000_ERR_CONFIG;
+- goto out;
++ return -E1000_ERR_CONFIG;
+ }
+
+ nvm->type = e1000_nvm_flash_sw;
+@@ -277,8 +274,7 @@ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
+ dev_spec->shadow_ram[i].value = 0xFFFF;
+ }
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -309,7 +305,7 @@ static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
+ if (mac->type == e1000_ich8lan)
+ e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
+
+- return E1000_SUCCESS;
++ return 0;
+ }
+
+ static s32 e1000_get_invariants_ich8lan(struct e1000_adapter *adapter)
+@@ -333,7 +329,7 @@ static s32 e1000_get_invariants_ich8lan(struct e1000_adapter *adapter)
+ (adapter->hw.phy.type == e1000_phy_igp_3))
+ adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
+
+- return E1000_SUCCESS;
++ return 0;
+ }
+
+ /**
+@@ -348,7 +344,6 @@ static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
+ {
+ u32 extcnf_ctrl;
+ u32 timeout = PHY_CFG_TIMEOUT;
+- s32 ret_val = E1000_SUCCESS;
+
+ while (timeout) {
+ extcnf_ctrl = er32(EXTCNF_CTRL);
+@@ -364,12 +359,10 @@ static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
+
+ if (!timeout) {
+ hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
+- ret_val = -E1000_ERR_CONFIG;
+- goto out;
++ return -E1000_ERR_CONFIG;
+ }
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -403,8 +396,7 @@ static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
+
+ fwsm = er32(FWSM);
+
+- return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? E1000_SUCCESS
+- : E1000_BLK_PHY_RESET;
++ return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
+ }
+
+ /**
+@@ -424,30 +416,30 @@ static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
+
+ if (phy->type != e1000_phy_ife) {
+ ret_val = e1000_phy_force_speed_duplex_igp(hw);
+- goto out;
++ return ret_val;
+ }
+
+ ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ e1000_phy_force_speed_duplex_setup(hw, &data);
+
+ ret_val = e1e_wphy(hw, PHY_CONTROL, data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ /* Disable MDI-X support for 10/100 */
+ ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ data &= ~IFE_PMC_AUTO_MDIX;
+ data &= ~IFE_PMC_FORCE_MDIX;
+
+ ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ hw_dbg(hw, "IFE PMC: %X\n", data);
+
+@@ -461,7 +453,7 @@ static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
+ 100000,
+ &link);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ if (!link)
+ hw_dbg(hw, "Link taking longer than expected.\n");
+@@ -472,11 +464,10 @@ static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
+ 100000,
+ &link);
+ if (ret_val)
+- goto out;
++ return ret_val;
+ }
+
+-out:
+- return ret_val;
++ return 0;
+ }
+
+ /**
+@@ -498,7 +489,7 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+
+ ret_val = e1000_phy_hw_reset_generic(hw);
+ if (ret_val)
+- goto out;
++ return ret_val;
+
+ /* Initialize the PHY from the NVM on ICH platforms. This
+ * is needed due to an issue where the NVM configuration is
+@@ -518,7 +509,7 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+
+ data = er32(FEXTNVM);
+ if (!(data & sw_cfg_mask))
+- goto out;
++ return 0;
+
+ /* Wait for basic configuration completes before proceeding*/
+ do {
+@@ -544,13 +535,13 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+ * extended configuration before